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March 27, 2025
This is an unofficial lecture organized by S.V. Cover.
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Current status

Since these slides are the result of free time work, they are not yet complete.
The following topics are currently missing from the slides:

More on variation of parameters (also for first order DEs)

Implicit differentiation

Improper integrals

Logarithmic differentiation (although something similar is discussed)
Trigonometric integrals

Rolle's theorem, Mean Value Theorem, Intermediate Value Theorem,
Fundamental Theorem of Calculus, ...

@ Derivative tests

Arc length of a curve
@ ... possibly more??
Still, we hope the slides are helpful.
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L'Hopital's rule

L'Hopital’s rule

If we have a limit lim £%) that is an indeterminate form of type
x—a 8(X)
0

0 =] a
0 Of o then?, we have

%if f and g are differentiable and g’(x) # 0 in a neighborhood of a (except possibly
!
at a) and if lim f,(x) exists or is oo
x—a &' (%)

@ lim 2sinx—sin2x __ i, 2cosx—2cos2x —2sinx44sin2x _

: = lim .
x—0 X—SsIn X x—0 1—cosx x—0 sin X
li —2cosx+8cos2x __ —248 __
m Cos X - 1
x—0
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Squeeze theorem

Squeeze theorem

If f(x) < g(x) < h(x) for x near a (except possibly at a), then:

limf(x)=Ilimh(x)=L = Ilimg(x)=1L

X—a X—a X—a

2ginl =2
X

o lim x
x—0

@ We have —1 < sin% < 1 for all real non-zero x, and x2 > 0, thus also:
—x2 < x? sin% < x?

: . . .1
o lim(—x?) = lim x> = 0, therefore | lim x?sin — =0|.
x—0 x—0 x—0 X
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Limits with e

Euler's number

n

Euler's number is equal to e = lim (1+ 1)
n—oo

x+11
x+5

. . 7x+3
@ Question: calculate lim ( )
X—00

@ Solution: next slide.
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Basic arithmetic

Complex numbers (a+ bi with a, b € R) behave just like you'd expect when
doing simple arithmetic. For example:

(12—-23/)+ (3+6i) =15—17i

(12 -23/) — (3+6/) =9 —29i

(5+6i)(7+8i) =35+ 82/ + 48> = —13 + 82i

For division, use this trick with the complex conjugate of the denominator:
2-3i _2-3i 450 (2-3)@a+si) 232 |23 2.

4-5/ —4-5/ g 5;  (4-BN@+5) 4T |21 a1’
~——
=1
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Complex numbers lie in the complex plane.

Jm

[ S

z=a+ bi = re’’ = r[cos + isin 6]

Instead of writing a + bi (rectangular form), we can equivalently write re’

or r[cosf + isin@]. The latter is known as the polar form.
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Converting to exponential and polar form

@ The modulus of a complex number z = x +yiis | r = |z| = /X2 + y2|.

@ In order to find the (principal) argument Arg(z), use the formula:

arctan(%) x>0
arctan(£)+7 x <0,y >0
0 = Arg(z) = atan2(y,x) = arctan(£) —m x <0,y <0
z x=0,y>0
—3 x=0,y<0
(undefined) x=0,y=0

This formula gives the angle between —7 < 0 < 7.
Angles are in radians! Fun fact: the function atan2(y, x) is
implemented in many programming languages, including C, Java, ...
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o 1+i=1+2-€"* (since V12412 = /2 and Arg(1 + i) = T)
o 1—i=+/2.-e™/* (now the angle is Arg(1 — i) = —7
@ —10 = 10e'™ (—10 lies on the negative real axis, so the angle is )
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Multiplying two complex numbers (polar form)

@ Suppose that we have two complex numbers z; = rie/® and
2> = re'%. Let's see what happens when we multiply:

o 2120 = re'1ne® = rryelt1t02),
@ Thus, when multiplying two complex numbers, the modulus gets

multiplied and the arguments (angles) get added.
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Getting the nt" roots of a number

@ Question: find all z € C for which z° = —10.

@ Solution: we have that arg(—10) = 7 + 2km and | — 10| = 10. So we
can write 2% = —10 = 10e/(™t2k7)  (tor k € 7)

@ Raising left-hand and right-hand side to the power % we obtain
2 — 10Y/5i(5+%5)

@ We have five solutions, so for example, take k to be 0,1, 2,3, 4 to find
the following solutions:

z = 10Y/5¢/(5) Vv oz = 10Y561CF)
vV oz=10Y5e" = _10Y5 v z=10Y51(F) vz = 10Y/56i(%)

@ (These are all solutions: if we were to go on for k =5,6,..., then the
solutions would repeat because sine and cosine (and thus, e?) have a
period of 27.)
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De Moivre's formula

o Question: write (v/3 4 i)1°% in the form a 4 bi

@ One approach would be to expand brackets a thousand times. However,
there is a faster method.

o We can write (v/3 + /)1000 — (2¢i7/6)1000 _ 21000,1000ix/6 _

1000 z4i7/6 _ 1000 (_% n @,-) — | 9999 | 5999, /3;

2

De Moivre's formula

Suppose we have a complex number z = €. Then, as in the example,
z" = ()" = e Rewriting in polar form gives us De Moivre’s
formula:

(cosf + isinB)" = cos nf + isin nf

In practice, using the exponential form (as in the example) may be
easier.
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Basic differentiation

o Differentiation is usually easy, thus we will only include some examples
without explaining all rules first. (One exception is differentiating x*
which will be covered in more detail.)

1 [2x2=3x+4] _  ax—3
3X+4)] T 2x2-3x+4 T x?2-3x+4

e Example: [In(2x? —

o Example: £(3)=0
e Example: (2x + 1)7 = 14(2x + 1)® (do not expand brackets, but use

the chain rule instead)
d*(sinx) _ d3(cosx) _ d?(—sinx) _ d(—cosx)

@ Example: = T ad = g = I =sinx
@ Therefore also:
Sin x — d*(sinx) _ d(sinx) __ d'(sinx) _ _ d*sinx)
- dx4 dx3 - dx12 B - dx400 -

(This is useful when computing the Taylor series of sin x.)
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d sin e’ B e’ lcos e B 3x2[ex3]’ —ex3[3x2]’ cos e
dx 3x2 | |3x2 3x2 ) (3x2)2 3x?

2031317 _ x3 X
_ 33’ [F]) - bxe Cos<e

(3x2)? 3x2
B 3x2(3x2e*’) — 6xe*’ cos e_"3
B (3x2)? 3x?

—|e’ (1— i cos e—X3
- 3x3 3x2
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A trick to differentiate x*

c—1

@ We know how to differentiate [¢*]" = ¢*In ¢ as well as [x€]" = cx

But what if x appears in both the base and the exponent?
o Let y(x) = x*. Then y = (el"¥)X = exXInx

The derivative then becomes: y'(x) = X" .

Which is equal to | y'(x) = x*(1 + Inx)

X]/ C]/

[xIn x]’

o Alternatively, use the following method: y = x*
Taking the logarithm: Iny = In(x*)= xIn x
Implicit differentiation: ¥ =1+ Inx (Why not £7)

Multiply both sides with y = x*: | y/(x) = x*(1 + In x)

@ Analogous reasoning can be used to differentiate similar functions like
(2X)5X+1.
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We could create a “power rule” for functions, similar to the product rule,
quotient rule etc.

So, say we have two functions f = f(x) and g = g(x), and that

y(x) = f(x)8*) Then we have:

y = & — (elnf)g _ eglnf
y' =eg"flginf] = fE[ginf]
/

y' =& (g’; +g’|nf>

So our “power rule” turns out to be

/
[Fe] = f& (gf? +g'In f)
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o [xdx = %x2 + C
o [cos(x)dx =sin(x)+ C
3
o [;(G+)dx=In|x| = 13 =(In(3) - 3) — (In(2) - 3) = In(3) + 5
@ Do not forget to write +C for indefinite integrals!
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Integration basics

@ Sometimes, you see both a function and a function’s derivative in the
same integral. Sometimes you can then use the chain rule in the
opposite direction, as follows:

° fCOSXdX:f 1 [sinx]’dlen|sinx|—|—c

sin x sin x
o [ eXsin(100 + 3e*)dx =3 [[100 + 3e*]'sin(100 + 3e*)dx =
—1cos(100 + 3e*) + C
dx 1 [ _2xdx  _ 1 [x*+137)dx _ 1 2
o [Fhm = =T =) e =2 |x* +137| + C
@ These integrals can also be solved using a substitution.
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@ The integrals from the last slide can also be solved using substitution.

e Example: ;2%

@ When we set u = x% + 137, we find du = 2xdx, thus:

@ Do not forget to convert the u back to x!



2
o Question: calculate [ (m" gy

o Detailed solution: we observe that [Inx]' = 1, and we also see that 1

appears in our integral. Thus, let us try u = Inx.
@ Then du = %dx, and therefore

2
/de:/uzdu:%u?’-l—(f: %(Inx)3+C

X

@ (It takes practice to find good substitutions.)
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Integration by parts (1)
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General form — Integration By Parts

Indefinite integrals: {u(x)v’(x)dx = [u(x)v(x)] = [ L;/ x)v(x)dx
Definite integrals: [ u(x)v/(x)dx = [u(x)v(x)]5 — [ v/ (x)v(x)dx

@ [ xcosxdx = [xsinx] — [1-sinxdx = xsinx + cosx + C

o [xe¥dx=[x-1e¥]— [1 1eXdx=2ixe® - 1>+ C
@ We see from examples 1 and 2 that if we have x in front of something we

know how to integrate, then we can also integrate the new thing! However,
“.B.P.” is more powerful than that.
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Integration by parts (2)

General form — Integration By Parts

@ Example: [ log,( 3W Ydw = L [(In(3) + w* In(w))dw =
5
w

i:§W+| 2fln 4dw—:“gw+| 2$[|3n( ) - % S—fi-%w%llw =
|:2W+In2 ([5 5'” f 5 4dW)—|22W+7(EW5|”(W)*75W5)+

C= %W+25|n2(5w5|n( ) — W)—|—C
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Repeated integration by parts

@ We saw that if we have something we can integrate (say sin x or €¥), then we

can also integrate the product of that function with x (so we can integrate
xsinx or xeX).

@ By applying I.B.P multiple times, we can even work away higher powers of x:
@ Question: integrate [ x*sin(x)dx.

@ Solution (pay attention to plus/minus!):
/x3 sin(x)dx = [-x3 cos x] + 3/x2 cos(x)dx
=[x cosx] + 3 ( [x*sinx] — 2/xsin(x)dx>

= [-x3cosx] +3 [ [x*sinx] — 2 ( [-xcosx] + /cos(x)dx

[-x3cosx] + 3 ( [x*sinx] — 2 ( [-xcosx] + /cos(x)dx

= —x3cosx +3x?sinx + 6xcosx — 6sinx + C
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Solving [ e*sin(x)dx and [ e cos(x)dx with I.B.P.

@ Question: find [ e*sin(x)dx.
e Solution:

/exsin(x)dx = [e*sinx] — /eX cos(x)dx
= e sinx — ([ex cos x| +/ex sin(x)dx)
= e¥sinx — e cosx — / e*sin(x)dx
We can now add | e*sin(x)dx to both sides:

2/ e*sin(x)dx = e*(sinx — cosx) + C

1 1
== /exsin(x)dx: Eex(sinx—cosx)—k C.| (where C, = EC)
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Trigonometric substitutions: example (slide 1)

@ Question: find
/5 Vx2 —4
—dx
2

x3

@ Solution: we substitute x = 2secf (for 0 < 6 < /2 or
m < 60 < 3m/2). It will be explained later why we choose this
substitution. Then we have dx = 2sec tan 6d6.We find:

Vx2—4=./(2sech)? —4 =2y/sec?f — 1 = 2Vtan?0

=2|tanf| = 2tanf

(We know that 2 [tan 6] = 2tan 6 because tanf > 0 for 0 < 0 < /2
orm <6< 37m/2)

Integral bounds: if x =2secf =2 then # = 0. If x =2secf =5 then
0= arccos(%). The integral will be worked out in the next slide.
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Trigonometric substitutions: example (slide 2)

Integral bounds: if x =2secf =2 then § = 0. If x =2secf =5 then
0 = arccos(Z). So, we have:

5./%2 _ arccos(2/5)
/ X4dx:/ 2t;ne2sec9tan9d9
s x3 0 8sec3 6

arccos(2/5) arccos(2/5)
:1/ sin29d9:1/ LT os26) do
; 2 Jo 2 2

arccos(2/5) 2
g — Esin 20 = &5(5) — 1sin 2 arccos g
2 4 0 4 8 5

NI = N
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Trigonometric substitutions table

@ In the previous example, we substituted x = 2sec and everything
magically worked out. How did we find this substitution? Well, we
used this scheme:

Trigonometric substitutions for integration

’ Expression \ Use the substitution And use

a’ — x2 x=asinf, -5 <0< 1 —sin®f# = cos? 6
Va2 + x?2 x=atanf, -5 <0< 1+ tan?6 = sec? 9
x2— 22 | x=asecl,0<0<Torr<0¥ | sec’f —1=tan?0

STELSIE]
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Watch out!

@ Question: solve

/ tV/ t2 + 2dt

@ Observation: we recognize that this integral contains the term
Vt2 + 2, thus we could try to make a trigonometric substitution.
However, this is going to cost much time.

It is much easier to say: u =t + 2, so du = 2tdt and solve the
integral that way, without any need for “trig sub”.

@ So, please think twice and be sure that no other way works, before
doing trig substitution!
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Integration by partial fractions

Sometimes you want to integrate the quotient of two polynomials:

Assume for now (very important!) that the degree of P is lower than the
degree of Q (otherwise do long division first).
Then we compute the integral as follows:

© Write f(x) as a sum of terms (partial fractions) of the form
Ax+B
(ax2+bx+cy

@ Solve for the constants A, B, ....

_A
(ax+b)’

and (see next slide).

© Integrate each partial fraction.

Mihnea Pasere & Aron Hardeman Calculus | (for CS) March 27, 2025 31/73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials
00000 0000000 Q000 Q00 000000
000000000000080000000000  OOO0000000000000000000

Finding the partial fraction decomposition

We have f(x) = Q((ig (vx./here deg(P) < deg(Q)). The goal is to write f(x)
as a sum of partial fractions.
Q If Q(x) = (a1x + b1)(azx + b2) ... (akx + bk) is the product of
distinct linear factors, then there exist constants Aq,..., Ay s.t.
P(x) _ A Ar Ak
Q(X) T aix+by + arx+by +ooe Tt agx+by -
@ |If some linear factor is repeated, it will occur multiple times in the

partial fraction decomposition: if we have Q(x) = ... (ajx + b;)" -
P(x) _ A
we get ooy = - (ax—l—b + (ax+b)2 +"'+W> +

© A distinct irreducible quadratic factor ajx? + bjx + ¢; of Q(x) adds a

term like Tbxrc o the partial fraction decomposition.
Q A repeated irreducible quadratic factor (a,-x2 + bix + ¢)" will give us
A1 x+B; Aox+ B> L. A x+B, . e
s ibixrc T Bl rbixtc)? + -4 @l bixtey I the decomposition.

Common mistake: forgetting the +B in cases 3 and 4!
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Finding the partial fraction decomposition: examples

Examples illustrating the last slide:

o f(x) = Gy () =35t 50

° f(x) = % - ) =Frtaant (2»%12)2

° f(X) = % - f(X) = ﬁ + x2+B31x+4 + (x2+§§+4)2 + (x2+3B>3<+4)3
But:

o f() = mraraery ()= e+ 57

NO: 2x + 4 is a constant multiple of x + 2 so the correct
decomposition is f(x) = X+2 +

(x+2)2 + x+3

3x+6 By

o f(x) = WTM — fx) = 3X+4 + x2+5x+4 + (x2+5x+4) e
NO: x% 4+ 5x + 4 = (x + 4)(x + 1) is not an irreducible quadratic!

o f(x) = 2Z4xtL o STOP! The degree of the numerator is not less

(x+1)(x+2)
than the degree of the denominator, so we must divide first.
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Long division before setting up P.F.D.

If we have some fraction f(x) = g%i)) where deg(P) > deg(Q), then we
must divide first.

For example:

f(X):2X37X278X73 2x(x? = x —2) +x% —4x -3

(x+1)(x—-2) x2—x—2
(x> -x—-2)—-3x—1 3x+1
=2 =2 1-—
X+ x2—x—2 X+ (x+1)(x-2)

(The 2x + 1 is easy to integrate, and we can do partial fractions to

integrate %)
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Tips for partial fractions

After having set up the partial fraction decomposition and solved for its

constants (example on next slide), we should integrate each partial fraction
individually.

The following guidelines are useful:
o [ axﬂb dx = 2In|ax + b| + C (the most common one)

° [ A = = Larctan(2) + C

@ integrate % (where b?> — 4ac < 0) by completing the square in
the denominator and substituting to get

fggjgdu—fc i du+ D [ o du.
e integrate [ (X2+32)2 dx by substituting x = atan.
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Sorry, not enough time to write it out.
So let’s do one of the following on the board:

o [ m dx (easy)
o [ ﬁ dx (medium)

3 2 .
° [ % dx (will take the rest of the lecture)
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Volumes of solids of revolution (‘normal’ way)

Question: compute the volume of the solid obtained by rotating the region
bounded by the curves y = 1 + secx and y = 3 about the line y = 1.

5
Solution: the curves intersect when 1 +secx = 3, «
i.e. when cosx = % We just take the solutions : —
- _T . L N
x=-—%2and x = 3. 2
Then we can compute the volume V as follows: il |
0 —‘3 7‘2 —‘1 0 1 2 3
/3 /3
V:/ (77(3—1)2—7T(1+secx—1)2) dX:ﬂ'/ (4 — sec® x) dx
—7/3 —7/3

=7 [ax —tanx]"" ; = w(4n/3 — V3) — m(—4n/3 + V3) = 873f — 213,

(Note: we could have used symmetry to make the integral easier.)
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Volumes of solids of revolution (cylindrical shells)

Sometimes it is (much) easier to compute volumes of solids of revolution as
follows.

Question: find the volume of the solid of revolution obtained by rotating
the region bounded by the curves y = v5+x2, y =0, x =0 and x = 2
around the y-axis.

Solution: on the board (answer is 27(27 — 5%/2)).
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Let f(x) = 2xe?*.
@ (a) Find the x- and y-coordinates of the local minima and maxima of
f(x).
@ (b) Find the range of f(x) for -1 < x < 2.

@ (c) Find the area between the x-axis and the graph of f(x) for
-1 <x<2.
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Sample question (slide 2)

Let f(x) = 2xe?*.
@ (question a) Find the x- and y-coordinates of the local extrema of f(x).

@ Solution: we compute the derivative f’(x) = 2e?* 4 4xe®* and set it to zero,

so
2e> + 4xe® =0
2e”(1+2x)=0
Since 2e>* is never equal to zero, our only solution to f/(x) = 0 is x = —1.
The corresponding y-coordinate is f(—1) = 2(—3) - €2(-2) = —1.
We see that f/(—1) = —2e72 < 0 and f/(0) =2 > 0, so (by the first
1 1
derivative test) we have a minimum, with coordinates (—2, —) .
e
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Sample question (slide 3)

Let f(x) = 2xe®.
@ (question b) Find the range of f(x) for —1 < x < 2.

@ Solution: from question (a), we know that this function has a

minimum with the coordinates (—3, —1). This minimum lies within

the domain —1 < x < 2. We are also interested in the value of f(x) at
the bounds of the domain, so we compute f(—1) = —2e~2 and

f(2) = 4e*. We observe that —1 < —2e72 < 4e*, so the range for

1
—1<x<2is {—,4e4} .
e
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Sample question (slide 4)

Let f(x) = 2xe®*.

Differential equations (DEs)
Q00
0000000000000000000000

Taylor polynomials
000000

@ (question c) Find the area between the x-axis and the graph of f(x) for

—1<x<2.

@ Solution: first compute the antiderivative of f(x) using integration by

parts:

/f(x)dx = /2xe2xdx = xe® — /ezxdx = (x — ;) e+ C

We see that f(x) is negative for x < 0 and positive for x > 0, so we

have to split up the integral (we do not want “negative area”).

Our answer then becomes

/01 f(x)dx /02 f(x)dx

Mihnea Pasere & Aron Hardeman
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Linear first order differential equations

Linear first order DE

In order to solve the linear differential equation
Y+ P(x)y = Q(x)

multiply both sides by e/ P(X)9x (the integrating factor), rewrite using
the product rule for derivatives, and integrate both sides.

@ Question: solve y’ + 2xy = x

@ Solution: next slide.
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Example: linear 1st order DEs

@ Question: solve y' + 2xy = x

@ Solution: the integrating factor is ef 2xdx — o< (the constant of

Taylor polynomials
000000

integration in the exponent is omitted). So we multiply both sides of

the DE by e<* and obtain

2 2 2
ey +2xe*y = xe*

Using the product rule for derivatives, this can be rewritten as

2

2 /
[ex y} = xe*
We integrate both sides and obtain

1
eXQy = /Xex2dx = §eX2 +C

We can divide both sides by &< to find the solution

Mihnea Pasere & Aron Hardeman Calculus | (for CS)
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Separable first order differential equations

o A separable first order differential equation is an equation where the
x's and y's can be “separated”, thus the equation can be rewritten into
the form y’f(y) = g(x). The method to solve these is to rewrite that
equation to the form f(y)dy = g(x)dx and then integrate both sides
Jf(y)dy = [ g(x)dx:

e Question: xyy’ = x> +1

@ Solution: rewrite the equation into ydy = #dx and integrate both
sides: [ ydy = [ X+l
So we find 3y = Zx>+In|x| + C

So the final answer becomes |y = +4/x% + 21In |x| + C, | where
C.=2C.
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(Linear) second order differential equations

General form

Homogeneous: ay” + by’ + cy =0
Non-homogeneous: ay” + by’ + cy = f(x)

(here we will only deal with the case that a, b and c are constant real numbers)

Example:
y" =8y’ +15y =0
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Solving a homogeneous 2nd order DE: basic example

Example: y” — 8y’ + 15y =0

First construct the corresponding quadratic equation and solve it:
r’—8r+15=0
(r—=3)(r—5)=0
r=3Vr=5

We have two distinct real roots (3 and 5), so the general solution of the DE
is

y = c1e3X + e for any constants ¢; and ¢
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“Algorithm” to solve the homogeneous case

You have some DE which you want to solve: ay” + by’ +cy =0
@ Step 1: construct the characteristic equation: ar’® + br +c =0

@ Step 2: solve it (compute the roots/solutions r; and r,)

@ Step 3: use the following scheme to find your final answer:

o Real (non-equal) roots: Y(x) = 1™ + e
o One real root: Y(x) = c1e™ + coxe™
o Case np=a=£if: Yix) = €**[c1 cos(Bx) + 2 sin(Bx)]

Mihnea Pasere & Aron Hardeman Calculus | (for CS) March 27, 2025 48 /73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials
00000 0000000 0000 000 000000
6066000000000000000000000  OOOe000000000000000000

Solving a homogeneous 2nd order DE: another example
Example: 7y” — 7y’ +2y =0
First construct the corresponding quadratic equation and solve it:
P —T7r+2=0
—(=7) £ /(-7)>—4-7-2
2.

n2 = 7
7T+—7
na=———"
14
1, V7
n2=5 1y

(Recall: Case np =a=£if:  yx) = e*[cicos(fx) + casin(Bx)])
We have two complex roots, so the general solution of the DE is

1, V7 (VT
y = e2* | ¢y cos 12" + ¢ sin 12~ for any constants ¢; and ¢
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Solving a homogeneous 2nd order DE: one more example

Example: y” + 16y’ + 64y =0
First construct the corresponding quadratic equation and solve it:

r? 4+ 16r +64 =0
(r+8)2=0
r= -8

We have just one root this time!

(Recall: in case there's just one root: y(,) = c1e™ + caxe™)
Therefore the general solution is:

= cre ¥ + ooxe ¥
y

for any constants ¢; and ¢

Beware: in case there is only one root, multiply the second term (xor the
first term) with x!
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NON-homogeneous second order DEs

General form

ay” + by’ + cy = f(x)

(a, b and c are constant real numbers)

Plan of attack:
@ Step 1: consider the complementary equation ay” + by’ + cy =0 and
compute it's solution y.. (This is easy as it's a homogeneous equation)

@ Step 2: find some particular solution y, to the original
non-homogeneous equation

@ Step 3: your general solution to the original equation is now
Yy=Yct+ ¥
The difficulty may be mostly in step 2.
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Non-homogeneous second order DEs: example 1 (part 1)

@ Question: find the general solution of the differential equation
7y — Ty 42y = x>+ 7.

@ Step 1: we had already found the complementary solution (to the
equation 7y” — 7y’ 4+ 2y = 0) before:
Ye = ez~ [cl cos (\1/4? ) + cpsin (‘1/; )} for any constants ¢ ».

@ Step 2: we must find some particular solution. Since x> + 7 is a 2nd
order polynomial, let's set our particular solution to y, = Ax?+ Bx+C.
We plug this in the DE in order to find A, B, and C. So we have
yp = Ax? + Bx + C, Yp = 2Ax + B and y, = 2A. Let's plug this in:
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Non-homogeneous second order DEs: example 1 (part 2)

e We will plug y, = Ax?> + Bx + C, Yp =2Ax+ B and y, = 2Ain the
original DE (7y” — 7y’ +2y = x?> 4+ 7) to find A, B and C of the
particular solution:

7(2A) — 7(2Ax + B) + 2(Ax®* + Bx + C) = x* + 7

(2A)x* + (—14A+2B)x + (14A — 7B +2C) = x* + 7

This must hold for all x, so the coefficients of the polynomials on the
left- and right-hand side, must be equal. So, we have 2A =1, and
—14A+2B =0, and 14A — 7B +2C = 7. From the first one, we find
A= % then from the second one we find B = % after which the third
one gives us C = %. Thus, we've found a particular solution:

_ 1.2 7 49
Yp=3X T ax+ 7.
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Non-homogeneous second order DEs: example 1 (part 3)

Step 3: now that we have found the complementary solution
1
Ve = eEX [cl cos <\1/4? ) + ¢ sin (fxﬂ and a particular solution

14
Yp = x? + 2x + 449, we can simply add them up to obtain the general

solut|on of 7y — 7y +2y = x>+ T:

— e2% | ¢ cos ﬁx + ¢psin ﬂx
Y= 1 14 2 14

for any constants ¢; and .

RER
27 27 T g
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The method of undetermined coefficients

@ In the previous example, we had x? 4 7 (a polynomial of order 2) on the right-hand side of
the differential equation. So we guessed that a particular solution could be a polynomial of
order 2 as well (Ax? + Bx + C). In general:

Method of undetermined coefficients

We search a particular solution to the differential equation ay”’ + by’ + cy = f(x).
Let Pn(x) and Qn(x) and Rs(x) denote polynomials of order n.

o If f(x) = eP,(x), then try y, = e Q,(x).
o If f(x) = ™ P,(x)sin mx or f(x) = e P,(x) cos mx, then try
¥p = e Qn(x) cos mx + e R,(x) sin mx

If any term in your “guess” is a solution to the complementary equation, then
multiply your guess y, by x (or x2 if it's still the case).
Plug your y,-guess in the DE in order to find the coefficients of Qn(x) and Ry(x).

\.

In the previous example we had the first case (with k = 0 such that e = 1).
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The method of undetermined coefficients (examples)

We search a particular solution to ay” + by’ + cy = f(x).
If f(x) = x3 or f(x) = 10000x* + x + 12, we would try Yo = Ax® + Bx?> + Cx + D.

If f(x) =sin8x or f(x) = 137 cos 8x, we would try y, = Acos8x + Bsin8x.

If f(x) = e™ or f(x) = 39e™, we would try y, = Ae’.

If £(x) = xe®™ or f(x) = xe® + €%, we would try y, = (Ax + B)e®

If f(x) = x*sinx, we would try y, = (Ax? + Bx + C)cosx + (Dx? + Ex + F)sin x.

If f(x) = e>™x?sin 4x, we would try
Yp = egX(AX + Bx + C) cos4x + e (Dx? + Ex + F)sin4x.

Notice that the last two examples are so long that you will probably not get them
on your exam (since you'd have to solve for 6 coefficients). However they are useful
as a demonstration of the principle.

Do not forget that you have to multiply your y,-guess by x if any term in your
guess is a solution to the complementary equation.
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The superposition principle
ay” + by’ + cy = fi(x) + fa(x)

@ Sometimes, f(x) is a sum of multiple functions, say
f(x) = fi(x) + f2(x). In that case, you can just find a particular
solution yp; to the differential equation ay” + by’ + cy = fi(x) and a
particular solution yp> to the differential equation
ay” 4+ by’ + cy = h(x).

@ Your particular solution to the differential equation
ay” 4+ by’ + cy = fi(x) + f2(x) is then given by yp1 + ypo.

@ Do not forget to add the complementary solution to your answer as
well.

@ (This also works for a sum of more than two functions; see next slide
for a full example.)
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Superposition principle & method of u.c. (example)

Question: solve y’’ — 6y’ + 8y = xe3* 4 xe** 4 xe®*

The complementary solution is y. = ¢; e2X 4 cre™ for any constants ¢; and c.

Let yp1 be a particular solution to y” — 6y’ + 8y = xe3%. Then y,1 must be of the form
yp1 = (Ax + B)e®. Substituting this in y” — 6y’ + 8y = xe3* gives that A= —1 and

B =0. So we find yp,1 = —xe®.

Let ypo be a partlcular solution to y” — 6y’ 4+ 8y = xe**. Then yp2 would be of the form
yp2 = (Cx + D)e*, but we observe that the term De** is a solution to the complementary
equation (since yc = c1e® + cpe**), thus we muIt|p|y the yp2-guess by x and obtain

Vp2 = (Cx2 + Dx)e**. We substitute this into y”’ — 6y’ + 8y = xe** and obtain C = %
and D = —%, so we find y,» = (1x% — 1x)e*.

Let y,3 be a partlcular solution to y"/ — 6y’ + 8y = xe%*. Then Yp3 must be of the form
yp3 = (Ex + F)e®*. Substituting this in y” — 6y’ + 8y = xe5* gives that E = 1 and

F=—2%. Sowefind yp3 = (3x — §)e®*.
The particular solution to the original differential equation is now
Vp1 + Vo2 + yp3 = —xe¥ 4 (3x% — $x)e + (3x — 2)e®. We add the full particular

solution to the complementary solution and obtain as our final answer:

1 1 1 4
y= c1e® + cre™ —xe¥ 4+ (sz - ZX) e+ <§X - 5) e for all ¢c; and o
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Sample question on differential equations (slide 1)

Question: solve the initial value problem

y" 42y =35y =3e>*  y(0)=137  y'(0) =42
Solution steps:

@ Step 1: solve the homogeneous equation y” + 2y’ — 35y = 0 to find
the complementary solution.

@ Step 2: use the method of undetermined coefficients to find a
particular solution to the original (non-homogeneous) equation.

@ Step 3: we add the complementary solution to the particular solution
to find the general solution of the original equation.

@ Step 4: apply the initial values to obtain the final answer.

o (Fully worked out solution on next slides)
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Sample question on differential equations (slide 2)

Question: solve the initial value problem
y" 42y =35y =3e>*  y(0)=137  y'(0) =42

Step 1: first we solve y” + 2y’ — 35y = 0. The characteristic equation is

r> +2r —35=0, thus (r + 7)(r —5) = 0, so the roots are 5 and —7, two
distinct real numbers.

Thus, the complementary solution takes the form y. = c;e® + cye™ "> for
any constants ¢; and ¢;. (Later we will determine which ¢; and ¢ suit our
initial values.)
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Sample question on differential equations (slide 3)

Question: solve the initial value problem
y" 42y =35y =3e>*  y(0)=137  y'(0) =42

Step 2: we apply the method of undetermined coefficients as explained
before. f(x) = 3e%*, so we would try the particular solution y, = Ae>*.

@ (Recall the first case from the method of u.c.: if f(x) = ek P,(x), then try y, = e Qn(x).

Here P,(x) = 3, a “polynomial” of degree 0)

However, the complementary solution was y. = c1€>* + coe™ " for any
constants ¢; and ¢. We observe that our trial particular solution

vp = Ae” will not work, because it is a solution to the complementary
equation! Thus, we multiply our guess by x, so our trial particular solution
is yp = Axe®*, but we still need to find the constant A (next slide).
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Sample question on differential equations (slide 4)

Question: solve the initial value problem
y' 42y =35y =3e>  y(0)=137  y'(0) =42

Step 2 (continuation): our trial particular solution is y, = Axe®, but we
need to find A. So we compute the derivatives: y, = A(e5% + 5xe®) and
v} = A(5€> + 5> + 25xe>*) = A(10e>* 4 25xe>)

We substitute this in the original differential equation to find:

A(10€> + 25xe>) + 2A(e>* + 5xe°X) — 35Axe™ = 3>
> 12Ae>* = 3™

So we take A = %. The guess worked (since we were able to find an A such

that y, = Axe® satisfies the differential equation), so we found the valid

particular solution yp = %xes".
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Sample question on differential equations (slide 5)

Question: solve the initial value problem
y" 42y =35y =3e>*  y(0)=137  y'(0) =42

Step 3): the general solution to the complementary equation was

Ve = c1€> + cpe~ ¥ and a particular solution is Yp = 4xe . We add these
together to obtain the general solution to the non- homogeneous (original)
equation for any constants ¢; and ¢:

1
y =ceX 4+ e X+ er5x

This is a solution for every c; and ¢, but we were given an initial value
problem, i.e. we still have to find ¢; and ¢ such that y(0) = 137 and
y'(0) = 42 (step 4, next slide).
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Sample question on differential equations (slide 6)

Question: solve the initial value problem
y' 42y =35y =3e>  y(0)=137  y'(0) =42

Step 4): the general solution to the differential equation is
y =c1e> + e X+ xe , with derivative

y/ — 5C1€5 —Tcre” 7X+ 1 5X+ %XeSX-

We need to have y(0) = 137 and y'(0) = 42, i.e.

1
y(0) =c1+ o = 137 y’(O):5c1—7c2+Z:42

Substituting ¢ = 137 — ¢1 into the second equation gives

5¢ — (137—c1)—|—7 =42 <— 12¢ = 4003 < = 4003 and from we

first equation we obtain ¢ = 137 — % = 2573. Therefore the solution is

4003 5, 2573

1
—7x bx
43 € 43 ©

—xe
4
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Method of variation of constants

We already discussed the method of undetermined coefficients to solve nonhomogeneous linear
ODEs. Now we discuss another method: variation of constants (or variation of parameters).

Suppose we have the general solution y(x) = c1y1(x) + c2y2(x) to some homogeneous DE
ay” + by’ +cy =0.
@ Then we can replace the constants cj, ¢ by functions u1(x) and wu2(x), and try to find a

particular solution to the nonhomogeneous equation ay”’ + by’ + cy = f(x) of the form

¥p(x) = u1(x)y1(x) + u2(x)y2(x)

@ Then we solve this system of equations for uj and u}:

a(ujy; +upys) ="~ (this comes from subbing y, into the DE)
uiyr + ujyo =0 (this is an additional constraint we impose!)

Then we integrate uj and u) to find u; and u, and then we found the general solution to
the nonhomogeneous equation.

Note: this method can be extended to many more types of equations, e.g. equations with

nonconstant coefficients. This is helpful if you have to find the general solution given some
particular solutions.
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Variation of constants: condensed example

Question: solve y” + 3y’ + 2y = sin(e¥).
Solution: a general solution to the equation y” + 3y’ + 2y = 0 is given by

y(x) = cre " + coe”?*. Now we have to solve the system of equations
—ule™ —2ube™®* =sin(e*X)  (note that a = 1)

uje ™ + ube™>* =0
Adding the two rows together, we find —uje™2% = sin(e*), so uy = —e?*sin(e*).
Then, we can also find uf = e*sin(e*).
Both integrals can be solved by substituting t = e* (then dt = e*dx):

u1(x) = — cos(€*)

up(x) = e* cos(€*) — sin(e*) (omitting constants of integration)

So a particular solution to the nonhomogeneous equation is

Yp(x) = — cos(eX)e ™ + (e* cos(€X) — sin(eX))e~> = —e *'sin(e*). So the

general solution is

y(x) = cre ™ + e ¥ —e > sin(e¥)
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Extra: constructing an ODE from its solutions

Question: give a linear homogeneous ODE with constant coefficients of

minimal order, which admits the solutions y; = 42 cos x, y» = —x cos x and
— A42x

y3=¢€"".

Solution: think backwards. If y1, y» and y3 are solutions, they must

correspond to roots in the characteristic equation of the ODE.

The solution 42 cos x corresponds to the roots r = /. As —x cos x must also
be a solution, these roots must both occur with multiplicity two.

42x

The solution e*** corresponds to the root r = 42.

So the characteristic equation must be
(rP+1)2(r—42)=0

Expanding brackets and replacing powers of r by derivatives of y, we find the
answer

y///// _ 42y//// + 2y/// _ 84y” + y/ —42y =0
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Sometimes, we want to approximate a function by a polynomial.
The nth degree Taylor polynomial of function f at x = a is given by

" U4 .
) =Y -y

Jj=0

provided f is differentiable n times.

This definition has been chosen such that the ith derivatives of f are equal
to the ith derivatives of T,(x) for i € {0,1,...,n}. Intuitively, this ensures
that around x = a, the behavior of the polynomial is similar to the behavior
of f, i.e., the polynomial approximates f.



|
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Interactive version: https://www.desmos.com/calculator/elb2sjyuhu


https://www.desmos.com/calculator/elb2sjyuhu
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Example Taylor polynomial question
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Find an expression for the (2n + 1)th degree Taylor polynomial Tz,41(x) of the function
f(x) = sin x centered around x = 0.

Solution: let's compute some derivatives:
fO(x) = f(x) = sinx fO() =0
M(x) = cos x FM) =1
FO(x) = —sinx £ 0) =0
F®)(x) = — cos x F3)(0) = —
F(x) = sinx F®)=0
f®)(x) = cosx &) =1
We see a pattern! These derivatives will infinitely repeat in a cycle of length four. Using the
definition, we get
T2nt1(x) = ZHZH r’(l)(a) (x — )J ZHZH i (0) !
=
e § N %T BN 2l (—1)ix2i+1

@n+1) ; (2i +1)!
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Evaluating limits with Taylor polynomials

We can do some nice things with Taylor polynomials, such as evaluating limits.
. ~ (siny/x)? — x cos x + %X2
@ Question: evaluate lim
x—0 xIn(1 + x) — x2
@ Solution: replace some of the terms by their Taylor polynomial:

(sin/x)? — x cos x + %x2

lim

x—0 xIn(1+4 x) —x2
o] i g+ o] 4}
:JTO x{ ijJro( )}7)(2
o [x = 12+ (g + )3 + 0(x4)] = [x = % + 06)] + 122
x—0 [ % O(x ’1)} — x2
e GE A& HON GO0 50 [ 49
x—0 —1x3 4+ O(x*) =014 0(x) -1+40 45

Note: in a similar fashion, you can approximate integrals using Taylor polynomials.
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Taylor's theorem

Let us write f(x) = T,(x) + En(x), where T,(x) is the nth degree Taylor
polynomial of the function f around x = a. We call E,(x) the error term.

Taylor's theorem

If fis n+ 1 times differentiable on the open interval between a and x and
£(n) is continuous on the closed interval between a and x, then

f(n+1)(c)

B0 =Gy

(X _ a)n+1

for some ¢ between a and x.

\.

Error estimation theorem (corollary): if there is a positive constant M for which
|f("+1)(y)| < M for all y between a and x, then

M|x — a|"*!
< 7 9
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Error estimation using Taylor's theorem

Question: estimate sin(1°) with an error less than 10713

Solution:

@ We want to approximate sin(1°) = sin 155 using the Taylor polynomials
of sin x (centered around x = 0). So, for which n do we have
|En(55)| < 107137

@ By the Error estimation theorem with M =1 (why?), we find that

|En(155)| < 10713 whenever (&% < 10713, This holds for n > 5.

@ Hence, it suffices to use the Taylor polynomial of degree 5. We get

3 5
sin(1°) ~ (7/180) — (”/1680) + (”/112%0) = 0.0174524064372836107 . ..

@ Verification: sin(15;) = 0.0174524064372835128.. ...
Verdict: success!
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