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Current status

Since these slides are the result of free time work, they are not yet complete.
The following topics are currently missing from the slides:

More on variation of parameters (also for first order DEs)

Implicit differentiation

Improper integrals

Logarithmic differentiation (although something similar is discussed)

Trigonometric integrals

Rolle’s theorem, Mean Value Theorem, Intermediate Value Theorem,
Fundamental Theorem of Calculus, ...

Derivative tests

Arc length of a curve

... possibly more??

Still, we hope the slides are helpful.
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Basic limits

lim
x→1

x2−1
x−1 = lim

x→1

(x+1)(x−1)
(x−1) = lim

x→1
(x + 1) = 1 + 1 = 2

lim
t→−4−

x2+9x+20
|x+4| = lim

t→−4−
x2+9x+20
−(x+4) = lim

t→−4−

(x+5)(x+4)
−(x+4) =

lim
t→−4−

−(x + 5) = −(−4 + 5) = −1

lim
x→−4

√
x2+9−5
x+4 = lim

x→−4

√
x2+9−5
x+4 ·

√
x2+9+5√
x2+9+5

= lim
x→−4

x2+9−25
(x+4)(

√
x2+9+5)

=

lim
x→−4

(x+4)(x−4)

(x+4)(
√
x2+9+5)

= lim
x→−4

x−4√
x2+9+5

= −4−4√
(−4)2+9+5

= −4
5
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L’Hôpital’s rule

L’Hôpital’s rule

If we have a limit lim
x→a

f (x)
g(x) that is an indeterminate form of type

0
0
0
0
0
0 or ∞

∞
∞
∞
∞
∞ , thena, we have

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

aif f and g are differentiable and g ′(x) ̸= 0 in a neighborhood of a (except possibly

at a) and if lim
x→a

f ′(x)
g′(x) exists or is ±∞

lim
x→0

2 sin x−sin 2x
x−sin x = lim

x→0

2 cos x−2 cos 2x
1−cos x = lim

x→0

−2 sin x+4 sin 2x
sin x =

lim
x→0

−2 cos x+8 cos 2x
cos x = −2+8

1 = 6
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Squeeze theorem

Squeeze theorem

If f (x) ≤ g(x) ≤ h(x) for x near a (except possibly at a), then:

lim
x→a

f (x) = lim
x→a

h(x) = L =⇒ lim
x→a

g(x) = L

lim
x→0

x2 sin 1
x =?

We have −1 ≤ sin 1
x ≤ 1 for all real non-zero x, and x2 ≥ 0, thus also:

−x2 ≤ x2 sin 1
x ≤ x2

lim
x→0

(−x2) = lim
x→0

x2 = 0, therefore lim
x→0

x2 sin
1

x
= 0 .
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Limits with e

Euler’s number

Euler’s number is equal to e = lim
n→∞

(
1 + 1

n

)n
.

Question: calculate lim
x→∞

(
x+11
x+5

)7x+3
.

Solution: next slide.
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Example limit with e

lim
x→∞

(
x + 11

x + 5

)7x+3

= lim
x→∞

(
1 +

6

x + 5

)7x+3

= lim
x→∞

(
1 +

1
x
6 + 5

6

)7x+3

= lim
x→∞

(
1 +

1
x
6 + 5

6

)( x
6
+ 5

6)·6·7−35+3

= lim
x→∞

(
1 +

1
x
6 + 5

6

)( x
6
+ 5

6)·42−32

= lim
x→∞

(1 + 1
x
6 + 5

6

)( x
6
+ 5

6)
42(

1 +
1

x
6 + 5

6

)−32

=

 lim
x→∞

(
1 +

1
x
6 + 5

6

)( x
6
+ 5

6)
42

· 1 = e42

Mihnea Pasere & Aron Hardeman Calculus I (for CS) March 27, 2025 7 / 73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials

1 Limits

2 Complex numbers

3 Differentiation & integration
Differentiation
Integration & Applications

4 Differential equations (DEs)
First order differential equations
Second order differential equations

5 Taylor polynomials
Mihnea Pasere & Aron Hardeman Calculus I (for CS) March 27, 2025 8 / 73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials

Basic arithmetic

Complex numbers (a+ bi with a, b ∈ R) behave just like you’d expect when
doing simple arithmetic. For example:
(12− 23i) + (3 + 6i) = 15− 17i
(12− 23i)− (3 + 6i) = 9− 29i
(5 + 6i)(7 + 8i) = 35 + 82i + 48i2 = −13 + 82i
For division, use this trick with the complex conjugate of the denominator:

2−3i
4−5i =

2−3i
4−5i ·

4 + 5i

4 + 5i︸ ︷︷ ︸
=1

= (2−3i)(4+5i)
(4−5i)(4+5i)=

23−2i
41 =

23

41
− 2

41
i
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Complex plane

Complex numbers lie in the complex plane.

a

b
r

z

θ Re

Im

z = a+ bi = re iθ = r [cos θ + i sin θ]

Instead of writing a+ bi (rectangular form), we can equivalently write re iθ

or r [cos θ + i sin θ]. The latter is known as the polar form.
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Converting to exponential and polar form

The modulus of a complex number z = x + yi is r = |z | =
√
x2 + y2 .

In order to find the (principal) argument Arg(z), use the formula:

θ = Arg(z) = atan2(y , x) =



arctan( yx ) x > 0

arctan( yx ) + π x < 0, y ≥ 0

arctan( yx )− π x < 0, y < 0
π
2 x = 0, y > 0

−π
2 x = 0, y < 0

(undefined) x = 0, y = 0

This formula gives the angle between −π < θ ≤ π.
Angles are in radians! Fun fact: the function atan2(y , x) is
implemented in many programming languages, including C, Java, ...
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Converting to exponential form (examples)

1 + i =
√
2 · e iπ/4 (since

√
12 + 12 =

√
2 and Arg(1 + i) = π

4 )

1− i =
√
2 · e−iπ/4 (now the angle is Arg(1− i) = −π

4 )

−10 = 10e iπ (−10 lies on the negative real axis, so the angle is π)
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Multiplying two complex numbers (polar form)

Suppose that we have two complex numbers z1 = r1e
iθ1 and

z2 = r2e
iθ2 . Let’s see what happens when we multiply:

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2).

Thus, when multiplying two complex numbers, the modulus gets
multiplied and the arguments (angles) get added.
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Getting the nth roots of a number

Question: find all z ∈ C for which z5 = −10.

Solution: we have that arg(−10) = π + 2kπ and | − 10| = 10. So we
can write z5 = −10 = 10e i(π+2kπ). (for k ∈ Z)

Raising left-hand and right-hand side to the power 1
5 , we obtain

z = 101/5e i(
π
5
+ 2kπ

5
)

We have five solutions, so for example, take k to be 0, 1, 2, 3, 4 to find
the following solutions:

z = 101/5e i(
π
5
) ∨ z = 101/5e i(

3π
5
)

∨ z = 101/5e iπ = −101/5 ∨ z = 101/5e i(
7π
5
) ∨ z = 101/5e i(

9π
5
)

(These are all solutions: if we were to go on for k = 5, 6, . . ., then the
solutions would repeat because sine and cosine (and thus, e iθ) have a
period of 2π.)
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De Moivre’s formula

Question: write (
√
3 + i)1000 in the form a+ bi

One approach would be to expand brackets a thousand times. However,
there is a faster method.
We can write (

√
3 + i)1000 = (2e iπ/6)1000 = 21000e1000iπ/6 =

21000e4iπ/6 = 21000
(
−1

2 +
√
3
2 i
)
= −2999 + 2999

√
3i

De Moivre’s formula

Suppose we have a complex number z = e iθ. Then, as in the example,
zn = (e iθ)n = e inθ. Rewriting in polar form gives us De Moivre’s
formula:

(cos θ + i sin θ)n = cos nθ + i sin nθ

In practice, using the exponential form (as in the example) may be
easier.
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Basic differentiation

Differentiation is usually easy, thus we will only include some examples
without explaining all rules first. (One exception is differentiating xx

which will be covered in more detail.)

Example: [ln(2x2 − 3x + 4)]′ = [2x2−3x+4]′

2x2−3x+4
= 4x−3

x2−3x+4

Example: d
dx (3) = 0

Example: (2x + 1)7 = 14(2x + 1)6 (do not expand brackets, but use
the chain rule instead)

Example: d4(sin x)
dx4

= d3(cos x)
dx3

= d2(− sin x)
dx2

= d(− cos x)
dx = sin x

Therefore also:
sin x = d4(sin x)

dx4
= d8(sin x)

dx8
= d12(sin x)

dx12
= . . . = d400(sin x)

dx400
= . . .

(This is useful when computing the Taylor series of sin x .)
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Differentiation example

d

dx
sin

(
ex

3

3x2

)
=

[
ex

3

3x2

]′
cos

(
ex

3

3x2

)
=

3x2[ex
3
]′ − ex

3
[3x2]′

(3x2)2
cos

(
ex

3

3x2

)

=
3x2(ex

3
[x3]′)− 6xex

3

(3x2)2
cos

(
ex

3

3x2

)

=
3x2(3x2ex

3
)− 6xex

3

(3x2)2
cos

(
ex

3

3x2

)

= ex
3

(
1− 2

3x3

)
cos

(
ex

3

3x2

)
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A trick to differentiate xx

We know how to differentiate [cx ]′ = cx ln c as well as [xc ]′ = cxc−1.
But what if x appears in both the base and the exponent?

Let y(x) = xx . Then y = (e ln x)x = ex ln x

The derivative then becomes: y ′(x) = ex ln x · [x ln x ]′

Which is equal to y ′(x) = xx(1 + ln x)

Alternatively, use the following method: y = xx

Taking the logarithm: ln y = ln(xx)= x ln x

Implicit differentiation: y ′

y = 1 + ln x (Why not 1
y ?)

Multiply both sides with y = xx : y ′(x) = xx(1 + ln x)

Analogous reasoning can be used to differentiate similar functions like
(2x)5x+1.
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Differentiating f (x)g(x)

We could create a “power rule” for functions, similar to the product rule,
quotient rule etc.
So, say we have two functions f = f (x) and g = g(x), and that
y(x) = f (x)g(x) Then we have:

y = f g = (e ln f )g = eg ln f

y ′ = eg ln f [g ln f ]′ = f g [g ln f ]′

y ′ = f g
(
g
f ′

f
+ g ′ ln f

)

So our “power rule” turns out to be

[f g ]′ = f g
(
g
f ′

f
+ g ′ ln f

)
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Integration: simple integrals

∫
xdx = 1

2x
2 + C∫

cos(x)dx = sin(x) + C∫ 3
2 (

1
x + 1

x2
)dx = [ln |x | − 1

x ]
3
2 = (ln(3)− 1

3)− (ln(2)− 1
2) = ln(32) +

1
6

Do not forget to write +C for indefinite integrals!
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Integration basics

Sometimes, you see both a function and a function’s derivative in the
same integral. Sometimes you can then use the chain rule in the
opposite direction, as follows:∫

cos x
sin x dx =

∫
1

sin x [sin x ]
′dx = ln |sin x |+ C∫

ex sin(100 + 3ex)dx =1
3

∫
[100 + 3ex ]′ sin(100 + 3ex)dx =

−1
3 cos(100 + 3ex) + C∫
xdx

x2+137
=1

2

∫
2xdx

x2+137
= 1

2

∫ [x2+137]′dx
x2+137

= 1
2 ln

∣∣x2 + 137
∣∣+ C

These integrals can also be solved using a substitution.
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Substitution rule (1)

The integrals from the last slide can also be solved using substitution.

Example:
∫

xdx
x2+137

When we set u = x2 + 137, we find du = 2xdx , thus:∫
xdx

x2+137
= 1

2

∫
1
udu = 1

2 ln |u|+ C = 1
2 ln |x

2 + 137|+ C

Do not forget to convert the u back to x!
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Substitution rule (2)

Question: calculate
∫ (ln x)2

x dx

Detailed solution: we observe that [ln x ]′ = 1
x , and we also see that 1

x
appears in our integral. Thus, let us try u = ln x .

Then du = 1
x dx , and therefore∫
(ln x)2

x
dx =

∫
u2du =

1

3
u3 + C =

1

3
(ln x)3 + C

(It takes practice to find good substitutions.)
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Integration by parts (1)

General form – Integration By Parts

Indefinite integrals:
∫
u(x)v ′(x)dx = [u(x)v(x)]−

∫
u′(x)v(x)dx

Definite integrals:
∫ b

a
u(x)v ′(x)dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x)dx

∫
xcos xdx = [xsin x ]−

∫
1 · sin xdx = x sin x + cos x + C∫

xe3xdx = [x · 1
3e

3x ]−
∫
1 · 1

3e
3xdx = 1

3xe
3x − 1

9e
3x + C

We see from examples 1 and 2 that if we have x in front of something we
know how to integrate, then we can also integrate the new thing! However,
“I.B.P.” is more powerful than that.
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Integration by parts (2)

General form – Integration By Parts

Indefinite integrals:
∫
u(x)v ′(x)dx = [u(x)v(x)]−

∫
u′(x)v(x)dx

Definite integrals:
∫ b

a
u(x)v ′(x)dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x)dx

Example:
∫
log2(3w

w4

)dw = 1
ln 2

∫
(ln(3) + w4 ln(w))dw =

ln 3
ln 2w + 1

ln 2

∫
ln(w) · w4dw = ln 3

ln 2w + 1
ln 2

(
[ln(w) · 1

5w
5]−

∫
1
w · 1

5w
5dw

)
=

ln 3
ln 2w + 1

ln 2

(
[ 15w

5 ln(w)]−
∫
· 15w

4dw
)
= ln 3

ln 2w + 1
ln 2

(
5
25w

5 ln(w)− 1
25w

5
)
+

C = ln 3
ln 2w + 1

25 ln 2

(
5w5 ln(w)− w5

)
+ C
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Repeated integration by parts

We saw that if we have something we can integrate (say sin x or ex), then we
can also integrate the product of that function with x (so we can integrate
x sin x or xex).

By applying I.B.P multiple times, we can even work away higher powers of x :

Question: integrate
∫
x3 sin(x)dx .

Solution (pay attention to plus/minus!):∫
x3 sin(x)dx = [−x3 cos x ] + 3

∫
x2 cos(x)dx

= [−x3 cos x ] + 3

(
[x2 sin x ]− 2

∫
x sin(x)dx

)
= [−x3 cos x ] + 3

(
[x2 sin x ]− 2

(
[−x cos x ] +

∫
cos(x)dx

))
= [−x3 cos x ] + 3

(
[x2 sin x ]− 2

(
[−x cos x ] +

∫
cos(x)dx

))
= −x3 cos x + 3x2 sin x + 6x cos x − 6 sin x + C
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Solving
∫
ex sin(x)dx and

∫
ex cos(x)dx with I.B.P.

Question: find
∫
ex sin(x)dx .

Solution: ∫
exsin(x)dx = [ex sin x ]−

∫
ex cos(x)dx

= ex sin x −
(
[ex cos x ] +

∫
ex sin(x)dx

)
= ex sin x − ex cos x −

∫
ex sin(x)dx

We can now add
∫
ex sin(x)dx to both sides:

2

∫
ex sin(x)dx = ex(sin x − cos x) + C

=⇒
∫

ex sin(x)dx =
1

2
ex(sin x − cos x) + C∗ (where C∗ =

1

2
C )
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Trigonometric substitutions: example (slide 1)

Question: find ∫ 5

2

√
x2 − 4

x3
dx

Solution: we substitute x = 2 sec θ (for 0 ≤ θ < π/2 or
π ≤ θ < 3π/2). It will be explained later why we choose this
substitution. Then we have dx = 2 sec θ tan θdθ.We find:√

x2 − 4 =
√

(2 sec θ)2 − 4 = 2
√
sec2 θ − 1 = 2

√
tan2 θ

= 2 |tan θ| = 2 tan θ

(We know that 2 |tan θ| = 2 tan θ because tan θ ≥ 0 for 0 ≤ θ < π/2
or π ≤ θ < 3π/2)
Integral bounds: if x = 2 sec θ = 2 then θ = 0. If x = 2 sec θ = 5 then
θ = arccos(25). The integral will be worked out in the next slide.
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Trigonometric substitutions: example (slide 2)

Integral bounds: if x = 2 sec θ = 2 then θ = 0. If x = 2 sec θ = 5 then
θ = arccos(25). So, we have:∫ 5

2

√
x2 − 4

x3
dx =

∫ arccos(2/5)

0

2 tan θ

8 sec3 θ
2 sec θ tan θdθ

=
1

2

∫ arccos(2/5)

0
sin2 θdθ =

1

2

∫ arccos(2/5)

0

(
1

2
− 1

2
cos 2θ

)
dθ

=
1

2

[
θ

2
− 1

4
sin 2θ

]arccos(2/5)
0

=
arccos(25)

4
− 1

8
sin

(
2 arccos

(
2

5

))
=

arccos(25)

4
− 1

8

(
2 sin

(
arccos

(
2

5

))
cos

(
arccos

(
2

5

)))
=

arccos(25)

4
− 1

10
sin

(
arccos

(
2

5

))
=

arccos(25)

4
−

√
21

50
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Trigonometric substitutions table

In the previous example, we substituted x = 2 sec θ and everything
magically worked out. How did we find this substitution? Well, we
used this scheme:

Trigonometric substitutions for integration

Expression Use the substitution And use
√
a2 − x2 x = a sin θ, −π

2 ≤ θ ≤ π
2 1− sin2 θ = cos2 θ√

a2 + x2 x = a tan θ, −π
2 < θ < π

2 1 + tan2 θ = sec2 θ√
x2 − a2 x = a sec θ, 0 ≤ θ < π

2
or π ≤ θ 3π

2
sec2 θ − 1 = tan2 θ
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Watch out!

Question: solve ∫
t
√

t2 + 2dt

Observation: we recognize that this integral contains the term√
t2 + 2, thus we could try to make a trigonometric substitution.

However, this is going to cost much time.
It is much easier to say: u = t2 + 2, so du = 2tdt and solve the
integral that way, without any need for “trig sub”.

So, please think twice and be sure that no other way works, before
doing trig substitution!
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Integration by partial fractions

Sometimes you want to integrate the quotient of two polynomials:

f (x) =
P(x)

Q(x)

.
Assume for now (very important!) that the degree of P is lower than the
degree of Q (otherwise do long division first).
Then we compute the integral as follows:

1 Write f (x) as a sum of terms (partial fractions) of the form A
(ax+b)i

and Ax+B
(ax2+bx+c)j

(see next slide).

2 Solve for the constants A, B, . . . .

3 Integrate each partial fraction.
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Finding the partial fraction decomposition

We have f (x) = P(x)
Q(x) (where deg(P) < deg(Q)). The goal is to write f (x)

as a sum of partial fractions.

1 If Q(x) = (a1x + b1)(a2x + b2) . . . (akx + bk) is the product of
distinct linear factors, then there exist constants A1, . . . ,Ak s.t.
P(x)
Q(x) =

A1
a1x+b1

+ A2
a2x+b2

+ · · ·+ Ak
akx+bk

.

2 If some linear factor is repeated, it will occur multiple times in the
partial fraction decomposition: if we have Q(x) = . . . · (aix + bi )

r · . . . ,
we get P(x)

Q(x) = . . .+
(

A1
aix+bi

+ A2
(aix+bi )2

+ · · ·+ Ar
(aix+bi )r

)
+ . . . .

3 A distinct irreducible quadratic factor aix
2 + bix + ci of Q(x) adds a

term like Ax+B
aix2+bix+ci

to the partial fraction decomposition.

4 A repeated irreducible quadratic factor (aix
2 + bix + c)r will give us

A1x+B1
aix2+bix+c

+ A2x+B2
(aix2+bix+c)2

+ · · ·+ Arx+Br
(aix2+bix+c)r

in the decomposition.

Common mistake: forgetting the +B in cases 3 and 4!
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Finding the partial fraction decomposition: examples

Examples illustrating the last slide:

f (x) = 3x+6
(3x+4)(3x+5) → f (x) = A

3x+4 + B
3x+5

f (x) = x2+42x+42
(x+1)(2x+42)2

→ f (x) = A
x+1 + B1

2x+42 + B2
(2x+42)2

f (x) = 3x+6
(3x+4)(x2+3x+4)3

→ f (x) = A
3x+4

+ B1
x2+3x+4

+ B2
(x2+3x+4)2

+ B3
(x2+3x+4)3

But:

f (x) = 1
(2x+4)(x+3)(x+2) → f (x) = A

2x+4 + B
x+3 + C

x+2???

NO: 2x + 4 is a constant multiple of x + 2 so the correct
decomposition is f (x) = A1

x+2 + A2
(x+2)2

+ B
x+3 .

f (x) = 3x+6
(3x+4)(x2+5x+4)2

→ f (x) = A
3x+4 +

B1
x2+5x+4

+ B2
(x2+5x+4)2

???

NO: x2 + 5x + 4 = (x + 4)(x + 1) is not an irreducible quadratic!

f (x) = x2+x+1
(x+1)(x+2) → STOP! The degree of the numerator is not less

than the degree of the denominator, so we must divide first.
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Long division before setting up P.F.D.

If we have some fraction f (x) = P(x)
Q(x) where deg(P) ≥ deg(Q), then we

must divide first.
For example:

f (x) =
2x3 − x2 − 8x − 3

(x + 1)(x − 2)
=

2x(x2 − x − 2) + x2 − 4x − 3

x2 − x − 2

= 2x +
(x2 − x − 2)− 3x − 1

x2 − x − 2
= 2x + 1− 3x + 1

(x + 1)(x − 2)

(The 2x + 1 is easy to integrate, and we can do partial fractions to
integrate 3x+1

(x+1)(x−2) .)
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Tips for partial fractions

After having set up the partial fraction decomposition and solved for its
constants (example on next slide), we should integrate each partial fraction
individually.
The following guidelines are useful:∫

A
ax+b dx = A

a ln |ax + b|+ C (the most common one)∫
dx

x2+a2
= 1

a arctan(
x
a ) + C

integrate Ax+B
ax2+bx+c

(where b2 − 4ac < 0) by completing the square in
the denominator and substituting to get∫

Cu+D
u2+a2

du =
∫
C u

u2+a2
du + D

∫
1

u2+a2
du.

integrate
∫

1
(x2+a2)2

dx by substituting x = a tan θ.
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Example on partial fractions

Sorry, not enough time to write it out.
So let’s do one of the following on the board:∫

1
(x+2)(x−3) dx (easy)∫

1
x− 5√x

dx (medium)∫
x3+2x2+3x−2
(x2+2x+2)2

dx (will take the rest of the lecture)

Mihnea Pasere & Aron Hardeman Calculus I (for CS) March 27, 2025 36 / 73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials

Volumes of solids of revolution (‘normal’ way)

Question: compute the volume of the solid obtained by rotating the region
bounded by the curves y = 1 + sec x and y = 3 about the line y = 1.

Solution: the curves intersect when 1 + sec x = 3,
i.e. when cos x = 1

2 . We just take the solutions
x = −π

3 and x = π
3 .

Then we can compute the volume V as follows:
−3 −2 −1 0 1 2 3

0

1

2

3

4

5

y = 1 + sec x
y = 3

V =

∫ π/3

−π/3

(
π(3− 1)2 − π(1 + sec x − 1)2

)
dx = π

∫ π/3

−π/3

(4− sec2 x) dx

= π [4x − tan x ]
π/3
−π/3 = π(4π/3−

√
3)− π(−4π/3 +

√
3) =

8π2

3
− 2π

√
3.

(Note: we could have used symmetry to make the integral easier.)
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Volumes of solids of revolution (cylindrical shells)

Sometimes it is (much) easier to compute volumes of solids of revolution as
follows.

Question: find the volume of the solid of revolution obtained by rotating
the region bounded by the curves y =

√
5 + x2, y = 0, x = 0 and x = 2

around the y -axis.

Solution: on the board (answer is 2
3π(27− 53/2)).
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Sample question (slide 1)

Let f (x) = 2xe2x .

(a) Find the x- and y -coordinates of the local minima and maxima of
f (x).

(b) Find the range of f (x) for −1 ≤ x ≤ 2.

(c) Find the area between the x-axis and the graph of f (x) for
−1 ≤ x ≤ 2.

Mihnea Pasere & Aron Hardeman Calculus I (for CS) March 27, 2025 39 / 73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials

Sample question (slide 2)

Let f (x) = 2xe2x .

(question a) Find the x- and y -coordinates of the local extrema of f (x).

Solution: we compute the derivative f ′(x) = 2e2x + 4xe2x and set it to zero,
so

2e2x + 4xe2x = 0

2e2x(1 + 2x) = 0

Since 2e2x is never equal to zero, our only solution to f ′(x) = 0 is x = − 1
2 .

The corresponding y -coordinate is f (− 1
2 ) = 2(− 1

2 ) · e
2(− 1

2 ) = − 1
e .

We see that f ′(−1) = −2e−2 < 0 and f ′(0) = 2 > 0, so (by the first

derivative test) we have a minimum, with coordinates

(
−1

2
,−1

e

)
.
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Sample question (slide 3)

Let f (x) = 2xe2x .

(question b) Find the range of f (x) for −1 ≤ x ≤ 2.

Solution: from question (a), we know that this function has a
minimum with the coordinates

(
−1

2 ,−
1
e

)
. This minimum lies within

the domain −1 ≤ x ≤ 2. We are also interested in the value of f (x) at
the bounds of the domain, so we compute f (−1) = −2e−2 and
f (2) = 4e4. We observe that −1

e < −2e−2 < 4e4, so the range for

−1 ≤ x ≤ 2 is

[
−1

e
, 4e4

]
.
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Sample question (slide 4)

Let f (x) = 2xe2x .

(question c) Find the area between the x-axis and the graph of f (x) for
−1 ≤ x ≤ 2.

Solution: first compute the antiderivative of f (x) using integration by
parts:∫

f (x)dx =

∫
2xe2xdx = xe2x −

∫
e2xdx =

(
x − 1

2

)
e2x + C

We see that f (x) is negative for x < 0 and positive for x > 0, so we
have to split up the integral (we do not want “negative area”).
Our answer then becomes∣∣∣∣∫ 0

−1
f (x)dx

∣∣∣∣+∣∣∣∣∫ 2

0
f (x)dx

∣∣∣∣ = ∣∣∣∣−1

2
+

3

2
e−2

∣∣∣∣+∣∣∣∣32e4 + 1

2

∣∣∣∣ = 1 +
3

2

(
e4 − e−2

)
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Linear first order differential equations

Linear first order DE

In order to solve the linear differential equation

y ′ + P(x)y = Q(x)

multiply both sides by e
∫
P(x)dx (the integrating factor), rewrite using

the product rule for derivatives, and integrate both sides.

Question: solve y ′ + 2xy = x

Solution: next slide.
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Example: linear 1st order DEs

Question: solve y ′ + 2xy = x

Solution: the integrating factor is e
∫
2xdx = ex

2
(the constant of

integration in the exponent is omitted). So we multiply both sides of
the DE by ex

2
and obtain

ex
2
y ′ + 2xex

2
y = xex

2

Using the product rule for derivatives, this can be rewritten as[
ex

2
y
]′

= xex
2

We integrate both sides and obtain

ex
2
y =

∫
xex

2
dx =

1

2
ex

2
+ C

We can divide both sides by ex
2
to find the solution y =

1

2
+ Ce−x2
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Separable first order differential equations

A separable first order differential equation is an equation where the
x’s and y’s can be “separated”, thus the equation can be rewritten into
the form y ′f (y) = g(x). The method to solve these is to rewrite that
equation to the form f (y)dy = g(x)dx and then integrate both sides∫
f (y)dy =

∫
g(x)dx :

Question: xyy ′ = x2 + 1

Solution: rewrite the equation into ydy = x2+1
x dx and integrate both

sides:
∫
ydy =

∫
x2+1
x dx

So we find 1
2y

2 = 1
2x

2 + ln |x |+ C

So the final answer becomes y = ±
√
x2 + 2 ln |x |+ C∗ where

C∗ = 2C .
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(Linear) second order differential equations

General form

Homogeneous: ay ′′ + by ′ + cy = 0
Non-homogeneous: ay ′′ + by ′ + cy = f (x)
(here we will only deal with the case that a, b and c are constant real numbers)

Example:
y ′′ − 8y ′ + 15y = 0
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Solving a homogeneous 2nd order DE: basic example

Example: y ′′ − 8y ′ + 15y = 0
First construct the corresponding quadratic equation and solve it:

r2 − 8r + 15 = 0

(r − 3)(r − 5) = 0

r = 3 ∨ r = 5

We have two distinct real roots (3 and 5), so the general solution of the DE
is

y = c1e
3x + c2e

5x for any constants c1 and c2

Mihnea Pasere & Aron Hardeman Calculus I (for CS) March 27, 2025 47 / 73



Limits Complex numbers Differentiation & integration Differential equations (DEs) Taylor polynomials

“Algorithm” to solve the homogeneous case

You have some DE which you want to solve: ay ′′ + by ′ + cy = 0ay ′′ + by ′ + cy = 0ay ′′ + by ′ + cy = 0

Step 1: construct the characteristic equation: ar2 + br + c = 0

Step 2: solve it (compute the roots/solutions r1 and r2)

Step 3: use the following scheme to find your final answer:

Solution cases for homogeneous 2nd order DE

Real (non-equal) roots: y(x) = c1e
r1x + c2e

r2x

One real root: y(x) = c1e
rx + c2xe

rx

Case r1,2 = α± iβ: y(x) = eαx [c1 cos(βx) + c2 sin(βx)]
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Solving a homogeneous 2nd order DE: another example

Example: 7y ′′ − 7y ′ + 2y = 0
First construct the corresponding quadratic equation and solve it:

7r2 − 7r + 2 = 0

r1,2 =
−(−7)±

√
(−7)2 − 4 · 7 · 2
2 · 7

r1,2 =
7±

√
−7

14

r1,2 =
1

2
± i

√
7

14

(Recall: Case r1,2 = α± iβ: y(x) = eαx [c1 cos(βx) + c2 sin(βx)])
We have two complex roots, so the general solution of the DE is

y = e
1
2 x

[
c1 cos

(√
7

14
x

)
+ c2 sin

(√
7

14
x

)]
for any constants c1 and c2
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Solving a homogeneous 2nd order DE: one more example

Example: y ′′ + 16y ′ + 64y = 0
First construct the corresponding quadratic equation and solve it:

r2 + 16r + 64 = 0

(r + 8)2 = 0

r = −8

We have just one root this time!
(Recall: in case there’s just one root: y(x) = c1e

rx + c2xe
rx)

Therefore the general solution is:

y = c1e
−8x + c2xxxe

−8x for any constants c1 and c2

Beware: in case there is only one root, multiply the second term (xor the
first term) with x!
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NON-homogeneous second order DEs

General form

ay ′′ + by ′ + cy = f (x)ay ′′ + by ′ + cy = f (x)ay ′′ + by ′ + cy = f (x)
(a, b and c are constant real numbers)

Plan of attack:

Step 1: consider the complementary equation ay ′′ + by ′ + cy = 000 and
compute it’s solution yc . (This is easy as it’s a homogeneous equation)

Step 2: find some particular solution yp to the original
non-homogeneous equation

Step 3: your general solution to the original equation is now
y = yc + yp

The difficulty may be mostly in step 2.
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Non-homogeneous second order DEs: example 1 (part 1)

Question: find the general solution of the differential equation
7y ′′ − 7y ′ + 2y = x2 + 7.

Step 1: we had already found the complementary solution (to the
equation 7y ′′ − 7y ′ + 2y = 0) before:

yc = e
1
2
x
[
c1 cos

(√
7

14 x
)
+ c2 sin

(√
7

14 x
)]

for any constants c1,2.

Step 2: we must find some particular solution. Since x2 + 7 is a 2nd
order polynomial, let’s set our particular solution to yp = Ax2+Bx +C .
We plug this in the DE in order to find A,B, and C . So we have
yp = Ax2 + Bx + C , y ′p = 2Ax + B and y ′′p = 2A. Let’s plug this in:
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Non-homogeneous second order DEs: example 1 (part 2)

We will plug yp = Ax2 + Bx + C , y ′p = 2Ax + B and y ′′p = 2A in the
original DE (7y ′′ − 7y ′ + 2y = x2 + 7) to find A, B and C of the
particular solution:

7(2A)− 7(2Ax + B) + 2(Ax2 + Bx + C ) = x2 + 7

(2A)x2 + (−14A+ 2B)x + (14A− 7B + 2C ) = x2 + 7

This must hold for all x , so the coefficients of the polynomials on the
left- and right-hand side, must be equal. So, we have 2A = 1, and
−14A+ 2B = 0, and 14A− 7B + 2C = 7. From the first one, we find
A = 1

2 , then from the second one we find B = 7
2 , after which the third

one gives us C = 49
4 . Thus, we’ve found a particular solution:

yp = 1
2x

2 + 7
2x + 49

4 .
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Non-homogeneous second order DEs: example 1 (part 3)

Step 3: now that we have found the complementary solution

yc = e
1
2
x
[
c1 cos

(√
7

14 x
)
+ c2 sin

(√
7

14 x
)]

and a particular solution

yp = 1
2x

2 + 7
2x + 49

4 , we can simply add them up to obtain the general
solution of 7y ′′ − 7y ′ + 2y = x2 + 7:

y = e
1
2
x

[
c1 cos

(√
7

14
x

)
+ c2 sin

(√
7

14
x

)]
+

1

2
x2 +

7

2
x +

49

4

for any constants c1 and c2.
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The method of undetermined coefficients

In the previous example, we had x2 + 7 (a polynomial of order 2) on the right-hand side of
the differential equation. So we guessed that a particular solution could be a polynomial of
order 2 as well (Ax2 + Bx + C). In general:

Method of undetermined coefficients

We search a particular solution to the differential equation ay ′′ + by ′ + cy = f (x).

Let Pn(x) and Qn(x) and Rn(x) denote polynomials of order n.

If f (x) = ekxPn(x), then try yp = ekxQn(x).

If f (x) = ekxPn(x) sinmx or f (x) = ekxPn(x) cosmx , then try
yp = ekxQn(x) cosmx + ekxRn(x) sinmx

If any term in your “guess” is a solution to the complementary equation, then
multiply your guess yp by x (or x2 if it’s still the case).
Plug your yp-guess in the DE in order to find the coefficients of Qn(x) and Rn(x).

In the previous example we had the first case (with k = 0 such that ekx = 1).
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The method of undetermined coefficients (examples)

We search a particular solution to ay ′′ + by ′ + cy = f (x).

If f (x) = x3 or f (x) = 10000x3 + x + 12, we would try yp = Ax3 + Bx2 + Cx + D.

If f (x) = sin 8x or f (x) = 137 cos 8x , we would try yp = A cos 8x + B sin 8x .

If f (x) = e7x or f (x) = 39e7x , we would try yp = Ae7x .

If f (x) = xe8x or f (x) = xe8x + e8x , we would try yp = (Ax + B)e8x .

If f (x) = x2 sin x , we would try yp = (Ax2 + Bx + C) cos x + (Dx2 + Ex + F ) sin x .

If f (x) = e9xx2 sin 4x , we would try
yp = e9x(Ax2 + Bx + C) cos 4x + e9x(Dx2 + Ex + F ) sin 4x .

Notice that the last two examples are so long that you will probably not get them
on your exam (since you’d have to solve for 6 coefficients). However they are useful
as a demonstration of the principle.

Do not forget that you have to multiply your yp-guess by x if any term in your
guess is a solution to the complementary equation.
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The superposition principle

ay ′′ + by ′ + cy = f1(x) + f2(x)

Sometimes, f (x) is a sum of multiple functions, say
f (x) = f1(x) + f2(x). In that case, you can just find a particular
solution yp1 to the differential equation ay ′′ + by ′ + cy = f1(x) and a
particular solution yp2 to the differential equation
ay ′′ + by ′ + cy = f2(x).

Your particular solution to the differential equation
ay ′′ + by ′ + cy = f1(x) + f2(x) is then given by yp1 + yp2.

Do not forget to add the complementary solution to your answer as
well.

(This also works for a sum of more than two functions; see next slide
for a full example.)
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Superposition principle & method of u.c. (example)

Question: solve y ′′ − 6y ′ + 8y = xe3x + xe4x + xe5x .

The complementary solution is yc = c1e2x + c2e4x for any constants c1 and c2.

Let yp1 be a particular solution to y ′′ − 6y ′ + 8y = xe3x . Then yp1 must be of the form
yp1 = (Ax + B)e3x . Substituting this in y ′′ − 6y ′ + 8y = xe3x gives that A = −1 and
B = 0. So we find yp1 = −xe3x .

Let yp2 be a particular solution to y ′′ − 6y ′ + 8y = xe4x . Then yp2 would be of the form
yp2 = (Cx + D)e4x , but we observe that the term De4x is a solution to the complementary
equation (since yc = c1e2x + c2e4x ), thus we multiply the yp2-guess by x and obtain

yp2 = (Cx2 + Dx)e4x . We substitute this into y ′′ − 6y ′ + 8y = xe4x and obtain C = 1
4

and D = − 1
4
, so we find yp2 = ( 1

4
x2 − 1

4
x)e4x .

Let yp3 be a particular solution to y ′′ − 6y ′ + 8y = xe5x . Then yp3 must be of the form

yp3 = (Ex + F )e5x . Substituting this in y ′′ − 6y ′ + 8y = xe5x gives that E = 1
3
and

F = − 4
9
. So we find yp3 = ( 1

3
x − 4

9
)e5x .

The particular solution to the original differential equation is now
yp1 + yp2 + yp3 = −xe3x + ( 1

4
x2 − 1

4
x)e4x + ( 1

3
x − 4

9
)e5x . We add the full particular

solution to the complementary solution and obtain as our final answer:

y = c1e
2x + c2e

4x−xe3x+

(
1

4
x2 −

1

4
x

)
e4x+

(
1

3
x −

4

9

)
e5x for all c1 and c2
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Sample question on differential equations (slide 1)

Question: solve the initial value problem

y ′′ + 2y ′ − 35y = 3e5x y(0) = 137 y ′(0) = 42

Solution steps:

Step 1: solve the homogeneous equation y ′′ + 2y ′ − 35y = 0 to find
the complementary solution.

Step 2: use the method of undetermined coefficients to find a
particular solution to the original (non-homogeneous) equation.

Step 3: we add the complementary solution to the particular solution
to find the general solution of the original equation.

Step 4: apply the initial values to obtain the final answer.

(Fully worked out solution on next slides)
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Sample question on differential equations (slide 2)

Question: solve the initial value problem

y ′′ + 2y ′ − 35y = 3e5x y(0) = 137 y ′(0) = 42

Step 1: first we solve y ′′ + 2y ′ − 35y = 0. The characteristic equation is
r2 + 2r − 35 = 0, thus (r + 7)(r − 5) = 0, so the roots are 5 and −7, two
distinct real numbers.
Thus, the complementary solution takes the form yc = c1e

5x + c2e
−7x for

any constants c1 and c2. (Later we will determine which c1 and c2 suit our
initial values.)
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Sample question on differential equations (slide 3)

Question: solve the initial value problem

y ′′ + 2y ′ − 35y = 3e5x y(0) = 137 y ′(0) = 42

Step 2: we apply the method of undetermined coefficients as explained
before. f (x) = 3e5x , so we would try the particular solution yp = Ae5x .

(Recall the first case from the method of u.c.: if f (x) = ekxPn(x), then try yp = ekxQn(x).

Here Pn(x) = 3, a “polynomial” of degree 0)

However, the complementary solution was yc = c1e
5x + c2e

−7x for any
constants c1 and c2. We observe that our trial particular solution
yp = Ae5x will not work, because it is a solution to the complementary
equation! Thus, we multiply our guess by x , so our trial particular solution
is yp = Axe5xyp = Axe5xyp = Axe5x , but we still need to find the constant A (next slide).
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Sample question on differential equations (slide 4)

Question: solve the initial value problem

y ′′ + 2y ′ − 35y = 3e5x y(0) = 137 y ′(0) = 42

Step 2 (continuation): our trial particular solution is yp = Axe5x , but we
need to find A. So we compute the derivatives: y ′p = A(e5x + 5xe5x) and
y ′′p = A(5e5x + 5e5x + 25xe5x) = A(10e5x + 25xe5x)
We substitute this in the original differential equation to find:

A(10e5x + 25xe5x) + 2A(e5x + 5xe5x)− 35Axe5x = 3e5x

⇐⇒ 12Ae5x = 3e5x

So we take A = 1
4 . The guess worked (since we were able to find an A such

that yp = Axe5x satisfies the differential equation), so we found the valid
particular solution yp = 1

4xe
5xyp = 1

4xe
5xyp = 1

4xe
5x .
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Sample question on differential equations (slide 5)

Question: solve the initial value problem

y ′′ + 2y ′ − 35y = 3e5x y(0) = 137 y ′(0) = 42

Step 3): the general solution to the complementary equation was
yc = c1e

5x + c2e
−7x and a particular solution is yp = 1

4xe
5x . We add these

together to obtain the general solution to the non-homogeneous (original)
equation for any constants c1 and c2:

y = c1e
5x + c2e

−7x +
1

4
xe5x

This is a solution for every c1 and c2, but we were given an initial value
problem, i.e. we still have to find c1 and c2 such that y(0) = 137 and
y ′(0) = 42 (step 4, next slide).
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Sample question on differential equations (slide 6)

Question: solve the initial value problem

y ′′ + 2y ′ − 35y = 3e5x y(0) = 137 y ′(0) = 42

Step 4): the general solution to the differential equation is
y = c1e

5x + c2e
−7x + 1

4xe
5x , with derivative

y ′ = 5c1e
5x − 7c2e

−7x + 1
4e

5x + 5
4xe

5x .
We need to have y(0) = 137 and y ′(0) = 42, i.e.

y(0) = c1 + c2 = 137 y ′(0) = 5c1 − 7c2 +
1

4
= 42

Substituting c2 = 137− c1 into the second equation gives
5c1− 7(137− c1)+

1
4 = 42 ⇐⇒ 12c1 = 4003

4 ⇐⇒ c1 = 4003
48 and from we

first equation we obtain c2 = 137− 4003
48 = 2573

48 . Therefore, the solution is

y =
4003

48
e5x +

2573

48
e−7x +

1

4
xe5x
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Method of variation of constants

We already discussed the method of undetermined coefficients to solve nonhomogeneous linear
ODEs. Now we discuss another method: variation of constants (or variation of parameters).
Suppose we have the general solution y(x) = c1y1(x) + c2y2(x) to some homogeneous DE
ay ′′ + by ′ + cy = 0.

Then we can replace the constants c1, c2 by functions u1(x) and u2(x), and try to find a
particular solution to the nonhomogeneous equation ay ′′ + by ′ + cy = f (x) of the form

yp(x) = u1(x)y1(x) + u2(x)y2(x)

Then we solve this system of equations for u′1 and u′2:{
a(u′1y

′
1 + u′2y

′
2) = f (this comes from subbing yp into the DE)

u′1y1 + u′2y2 = 0 (this is an additional constraint we impose!)

Then we integrate u′1 and u′2 to find u1 and u2, and then we found the general solution to
the nonhomogeneous equation.

Note: this method can be extended to many more types of equations, e.g. equations with
nonconstant coefficients. This is helpful if you have to find the general solution given some
particular solutions.
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Variation of constants: condensed example

Question: solve y ′′ + 3y ′ + 2y = sin(ex).
Solution: a general solution to the equation y ′′ + 3y ′ + 2y = 0 is given by
y(x) = c1e

−x + c2e
−2x . Now we have to solve the system of equations{

−u′1e
−x − 2u′2e

−2x = sin(ex) (note that a = 1)

u′1e
−x + u′2e

−2x = 0

Adding the two rows together, we find −u′2e
−2x = sin(ex), so u′2 = −e2x sin(ex).

Then, we can also find u′1 = ex sin(ex).
Both integrals can be solved by substituting t = ex (then dt = exdx):

u1(x) = − cos(ex)

u2(x) = ex cos(ex)− sin(ex) (omitting constants of integration)

So a particular solution to the nonhomogeneous equation is
yp(x) = − cos(ex)e−x + (ex cos(ex)− sin(ex))e−2x = −e−2x sin(ex). So the
general solution is

y(x) = c1e
−x + c2e

−2x −e−2x sin(ex)
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Extra: constructing an ODE from its solutions

Question: give a linear homogeneous ODE with constant coefficients of
minimal order, which admits the solutions y1 = 42 cos x , y2 = −x cos x and
y3 = e42x .

Solution: think backwards. If y1, y2 and y3 are solutions, they must
correspond to roots in the characteristic equation of the ODE.

The solution 42 cos x corresponds to the roots r = ±i . As −x cos x must also
be a solution, these roots must both occur with multiplicity two.

The solution e42x corresponds to the root r = 42.

So the characteristic equation must be

(r2 + 1)2(r − 42) = 0

Expanding brackets and replacing powers of r by derivatives of y , we find the
answer

y ′′′′′ − 42y ′′′′ + 2y ′′′ − 84y ′′ + y ′ − 42y = 0
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Taylor polynomials

Sometimes, we want to approximate a function by a polynomial.
The nth degree Taylor polynomial of function f at x = a is given by

Tn(x) =
n∑

j=0

f (j)(a)

j!
(x − a)j ,

provided f is differentiable n times.
This definition has been chosen such that the ith derivatives of f are equal
to the ith derivatives of Tn(x) for i ∈ {0, 1, . . . , n}. Intuitively, this ensures
that around x = a, the behavior of the polynomial is similar to the behavior
of f , i.e., the polynomial approximates f .
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Visualization

−10 −5 0 5 10

−4

−2

0

2

4
sin(x)

x − x3

3! +
x5

5!

Interactive version: https://www.desmos.com/calculator/elb2sjyuhu
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Example Taylor polynomial question

Find an expression for the (2n + 1)th degree Taylor polynomial T2n+1(x) of the function
f (x) = sin x centered around x = 0.
——————————————————————————
Solution: let’s compute some derivatives:

f (0)(x) = f (x) = sin x f (0)(0) = 0

f (1)(x) = cos x f (1)(0) = 1

f (2)(x) = − sin x f (2)(0) = 0

f (3)(x) = − cos x f (3)(0) = −1

f (4)(x) = sin x f (4)(0) = 0

f (5)(x) = cos x f (5)(0) = 1

We see a pattern! These derivatives will infinitely repeat in a cycle of length four. Using the
definition, we get

T2n+1(x) =
2n+1∑
j=0

f (j)(a)

j!
(x − a)j =

2n+1∑
j=0

f (j)(0)

j!
x j

= x −
x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n + 1)!
=

n∑
i=0

(−1)ix2i+1

(2i + 1)!
.
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Evaluating limits with Taylor polynomials

We can do some nice things with Taylor polynomials, such as evaluating limits.

Question: evaluate lim
x→0

(sin
√
x)2 − x cos x + 1

3
x2

x ln(1 + x)− x2
.

Solution: replace some of the terms by their Taylor polynomial:

lim
x→0

(sin
√
x)2 − x cos x + 1

3
x2

x ln(1 + x)− x2

= lim
x→0

[
x1/2 − x3/2

3!
+ x5/2

5!
+ O(x7/2)

]2
− x

[
1− x2

2!
+ O(x4)

]
+ 1

3
x2

x
[
x − x2

2
+ O(x3)

]
− x2

= lim
x→0

[
x − 1

3
x2 + ( 1

3!3!
+ 2

5!
)x3 + O(x4)

]
−

[
x − x3

2!
+ O(x5)

]
+ 1

3
x2[

x2 − x3

2
+ O(x4)

]
− x2

= lim
x→0

( 1
3!3!

+ 2
5!

+ 1
2!
)x3 + O(x4)

− 1
2
x3 + O(x4)

= lim
x→0

49
90

+ O(x)

− 1
2
+ O(x)

=
49
90

+ 0

− 1
2
+ 0

= −
49

45
.

Note: in a similar fashion, you can approximate integrals using Taylor polynomials.
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Taylor’s theorem

Let us write f (x) = Tn(x) + En(x), where Tn(x) is the nth degree Taylor
polynomial of the function f around x = a. We call En(x) the error term.

Taylor’s theorem

If f is n + 1 times differentiable on the open interval between a and x and
f (n) is continuous on the closed interval between a and x , then

En(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

for some c between a and x .

Error estimation theorem (corollary): if there is a positive constant M for which
|f (n+1)(y)| ≤ M for all y between a and x , then

|En(x)| ≤
M|x − a|n+1

(n + 1)!
.
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Error estimation using Taylor’s theorem

Question: estimate sin(1◦) with an error less than 10−13.

Solution:

We want to approximate sin(1◦) = sin π
180 using the Taylor polynomials

of sin x (centered around x = 0). So, for which n do we have
|En(

π
180)| < 10−13?

By the Error estimation theorem with M = 1 (why?), we find that

|En(
π
180)| < 10−13 whenever

( π
180

)n+1

(n+1)! < 10−13. This holds for n ≥ 5.

Hence, it suffices to use the Taylor polynomial of degree 5. We get

sin(1◦) ≈ (π/180)− (π/180)3

6
+

(π/180)5

120
= 0.0174524064372836107 . . .

Verification: sin( π
180

) = 0.0174524064372835128 . . .

Verdict: success!
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