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Derivatives

We already know how to compute the derivative of a function of one
variable, e.g., for f (x) = sin(x2) we get:

df

dx
= 2x cos(x2)

d2f

dx2
= 2 cos(x2)− 4x2 sin(x2)

If we have a function of more than one variable, say
g(x , y , z) = x5y + 3ez , then we can compute three partial derivatives, one
with respect to each input variable.
The partial derivative of g with respect to x is denoted ∂g

∂x or gx .

The partial derivative of g with respect to y is denoted ∂g
∂y or gy .

The partial derivative of g with respect to z is denoted ∂g
∂z or gz .

Notice that we use a “curly d” (∂) for partial derivatives.
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Computing partial derivatives

To compute partial derivatives, we use this rule: in order to compute
the partial derivative with respect to one variable (say x), we use
the regular derivative rules that we already know, while regarding
the other variables (y and z) as constants.

Take g(x , y , z) = x5y + 3ez :

gx = 5x4y gy = x5 gz = 3ez

For example, when we compute gx , we see that the 3ez term vanishes
(since we regard z as a constant, 3ez is also constant, and the derivative
of a constant is 0). And the derivative of the term x5y is just 5x4y , since
y is regarded as constant.
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Higher order partial derivatives

Of course, we can also take the derivative of the derivative, and compute
higher order partial derivatives in that way. Take for example
f (x , y , z) = xey sin(z2),

fx = ey sin(z2) fy = xey sin(z2) fz = 2xeyz cos(z2)

There are nine second order partial derivatives (fxy = (fx)y ):

fxx = 0 fyx = ey sin(z2) fzx = 2eyz cos(z2)

fxy = ey sin(z2) fyy = xey sin(z2) fzy = 2xeyz cos(z2)

fxz = 2eyz cos(z2) fyz = 2xeyz cos(z2) fzz = 2xey
[
cos(z2)− 2z2 sin(z2)

]
We observe that in the end, the order of differentiation did not matter:
fxy = fyx , and fxz = fzx , and fyz = fzy . In fact, this is always the case for
any function1. (Clairaut’s theorem).

1As long as the function has continuous second order partial derivatives
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The gradient vector

The gradient is the vector of first-order partial derivatives of a function.
For functions of two or three variables, the gradient is

∇⃗f (x , y) =

[ ∂
∂x f (x , y)
∂
∂y f (x , y)

]
∇⃗g(x , y , z) =

 ∂
∂x g(x , y , z)
∂
∂y g(x , y , z)
∂
∂z g(x , y , z)


The gradient of f can also be written as grad f or ∇f , but in these slides
we use ∇⃗f in order to accentuate the vectorial nature of the gradient.
The gradient is important, because the directional derivative of a function
at a point is maximal when you go in the direction of the gradient. So,
the gradient gives the direction of steepest increase of a function.
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The directional derivative

When you have a function f of more than one input variable, say f (x , y),
you might wonder what the rate of change in a particular direction is. This
is the directional derivative.

Directional derivative

The directional derivative of f (x , y) in the direction of a UNIT vector

û =

[
a
b

]
is

Dûf (x , y) = fx(x , y)a+ fy (x , y)b = ∇⃗f (x , y) · û

Similarly, in three dimensions, the directional derivative of f (x , y , z)
in the direction of a UNIT vector û = [a b c]T is given by

Dûf (x , y , z) = fx(x , y , z)a+fy (x , y , z)b+fz(x , y , z)c = ∇⃗f (x , y , z)·û
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Directional derivative: example

Question: calculate the directional derivative of

f (x , y) = 4x2 + xex+2y − ye2x+y + 42 in the direction of the vector v⃗ =

[
−4
3

]
at

the point (5, 6).

Step 1: observe that v⃗ is not a unit vector. We have to convert it into a unit
vector by dividing it by its length |v⃗ | =

√
(−4)2 + 32 = 5.

v̂ =
v⃗

|v⃗ | =
[
−4/5
3/5

]
Step 2: calculate the partial derivatives:

fx(x , y) = 8x + (1 + x)ex+2y − 2ye2x+y fx(5, 6) = 40 + 6e17 − 12e16

fy (x , y) = 2xex+2y − (1 + y)e2x+y fy (5, 6) = 10e17 − 7e16

Step 3: the directional derivative is: (do not forget to use the unit vector!)

Dv̂ f (5, 6) = −4

5
fx(5, 6) +

3

5
fy (5, 6)

= −4

5
(40 + 6e17 − 12e16) +

3

5
(10e17 − 7e16) = −32 +

27

5
e16 +

6

5
e17

Aron Hardeman Multivariable Calculus (CS+AI) June 15, 2023 7 / 40



Derivatives and applications Double integrals Triple integrals

1 Derivatives and applications
Partial derivatives
The gradient & directional derivative
Tangent planes
Critical points

2 Double integrals
In Cartesian coordinates (x , y)
In polar coordinates (r , θ)

3 Triple integrals
Aron Hardeman Multivariable Calculus (CS+AI) June 15, 2023 8 / 40



Derivatives and applications Double integrals Triple integrals

Tangent planes

Tangent planes

Case 1: When you have a function f (x , y) and consider the surface
given by all points (x , y , f (x , y)), then the tangent plane to the sur-
face at (a, b, f (a, b)) is given by

z = f (a, b) + fx(a, b)(x − a) + fy (a, b)(y − b)

Case 2: When you have a function f (x , y , z) and consider the surface
given by all points for which f (x , y , z) = K (for some K ), then the
tangent plane to the surface at (a, b, c) is given by

fx(a, b, c)(x − a) + fy (a, b, c)(y − b) + fz(a, b, c)(z − c) = 0
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Tangent planes: example

Question: Given the function z = f (x , y) = 3xy + exy
2+3, find the

tangent plane to this surface at the point (−3, 1).

Step 1: We decide to use ”case 1” from the previous slide. Calculate
the partial derivatives:

fx(x , y) = 3y + y2exy
2+3 fy (x , y) = 3x + 2xyexy

2+3

fx(−3, 1) = 4 fy (−3, 1) = −15

Step 2: The tangent plane is thus

z = −8 + 4(x + 3)− 15(y − 1)

Step 3: rewrite nicely:

4x − 15y − z = −19
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Tangent planes: another example

Question: find the tangent plane to the surface given by
x2y3 + 3x3 + x2y + xyz2 + yz2 = xy at the point (1,−1, 1).

Step 1: We recognize that we can define
f (x , y , z) = x2y3 +3x3 + x2y + xyz2 + yz2 − xy , and then the surface
is just f (x , y , z) = 0. So we decide to use ”case 2” from the schema.

Step 2: calculate the partial derivatives:

fx(x , y , z) = 2xy3 + 9x2 + 2xy + yz2 − y fx(1,−1, 1) = 5

fy (x , y , z) = 3x2y2 + x2 + xz2 + z2 − x fy (1,−1, 1) = 5

fz(x , y , z) = 2xyz + 2yz fz(1,−1, 1) = −4

Step 3: The tangent plane is thus (see ”case 2”):

5(x − 1) + 5(y + 1)− 4(z − 1) = 0
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Critical points

A function f (x , y) can have local maxima, local minima and/or saddle
points. These are also called critical points.

Critical points

A function f (x , y) has a critical point (or stationary point) at (a, b)
when fx(a, b) = 0 and fy (a, b) = 0.

Example: find the critical points of f (x , y) = 2x2 + 2xy + 3y2 − 4y .
Solution: we calculate both partial derivatives and set them equal to zero:
fx(x , y) = 4x + 2y and fy (x , y) = 2x + 6y − 4; so we get the system of

equations

{
4x + 2y = 0

2x + 6y = 4
, which has the (only) solution x = −2

5 , y = 4
5 .

So the (only) critical point of f (x , y) is

(
−2

5
,
4

5

)
.
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The second derivative test

Second derivative test

Suppose a function f (x , y) has a critical point at (a, b). Then we
can calculate D = D(a, b) = fxx(a, b)fyy (a, b)− [fxy (a, b)]

2

Then:

If D > 0 and fxx(a, b) > 0, then (a, b) is a local minimum

If D > 0 and fxx(a, b) < 0, then (a, b) is a local maximum

If D < 0, then (a, b) is a saddle point

If D = 0, then the test is inconclusive
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The second derivative test (example)

Question: find and classify the critical points of
f (x , y) = 2x2 + 2xy + 3y2 − 4y .

Step 1: we already found that the (only) critical point of f (x , y) is(
−2

5 ,
4
5

)
and fx(x , y) = 4x + 2y and fy (x , y) = 2x + 6y − 4.

Step 2: the second partial derivatives are fxx(x , y) = 4, fyy (x , y) = 6,
fxy (x , y) = 2. (Also fyx(x , y) = 2, as it should be).

Step 2: calculate

D

(
−2

5
,
4

5

)
= fxx

(
−2

5
,
4

5

)
fyy

(
−2

5
,
4

5

)
−
[
fxy

(
−2

5
,
4

5

)]2
= 4 · 6− 22 = 20

Step 4: we see that D(−2
5 ,

4
5) = 20 > 0 and fxx(−2

5 ,
4
5) = 4 > 0,

thus the point (−2
5 ,

4
5) is a local minimum.
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Find the closest point in plane (1/3) (Q4 exam 2021)

Question: find the coordinates of the point (x , y , z) in the plane
z = ax + by + c which is closest to the point (1, 2,−1) outside that
plane. (Express the result in terms of a, b and c)

Step 1: The distance between a point (x , y , z) and the point
(1, 2,−1) is

√
(x − 1)2 + (y − 2)2 + (z + 1)2. Using the equation of

the plane, this distance can be written as√
(x − 1)2 + (y − 2)2 + (ax + by + c + 1)2, and we must find the x

and y that minimize this distance. (From x and y , we can then
calculate z using z = ax + by + c). But instead of minimizing the
square root, we can make our task easier by finding the x and y that
minimize f (x , y) = (x − 1)2 + (y − 2)2 + (ax + by + c + 1)2.
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Find the closest point in plane (2/3) (Q4 exam 2021)

Step 2: We wanted to minimize
f (x , y) = (x − 1)2 + (y − 2)2 + (ax + by + c + 1)2, so we set
fx(x , y) = 0 and fy (x , y) = 0:

fx(x , y) = 2(x − 1) + 2a(ax + by + c + 1) = 0

fy (x , y) = 2(y − 2) + 2b(ax + by + c + 1) = 0

This results in the linear system of equations

(2 + 2a2)x + (2ab)y = 2− 2ac − 2a

(2ab)x + (2 + 2b2)y = 4− 2bc − 2b

which we must solve for x and y .
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Find the closest point in plane (3/3) (Q4 exam 2021)

We can write the system of equations as a matrix:[
(2 + 2a2)x (2ab)y | 2− 2ac − 2a
(2ab)x (2 + 2b2)y | 4− 2bc − 2b

]
By subtracting 1+b2

ab times the first row from the second row, we can find

(after a long series of calculations) that x = b2−2ab−ac−a+1
a2+b2+1

. Similarly, we

can find that y = 2a2−ab−bc−b+2
a2+b2+1

. We can then calculate z = ax + by + c :

z = a
b2 − 2ab − ac − a+ 1

a2 + b2 + 1
+ b

2a2 − ab − bc − b + 2

a2 + b2 + 1
+ c =

−a2 − b2 + a+ 2b + c

a2 + b2 + 1

So the point we searched is(
b2 − 2ab − ac − a+ 1

a2 + b2 + 1
,
2a2 − ab − bc − b + 2

a2 + b2 + 1
,
−a2 − b2 + a+ 2b + c

a2 + b2 + 1

)
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Computing normal double integrals (1/2)

Question: calculate the volume of the 3D body between z = f (x , y) = (2x + 3)ey

and the xy -plane, when the bounds of x and y are the rectangle −1 ≤ x ≤ 1 and
0 ≤ y ≤ 2.

The region of integration is
D = {(x , y) | −1 ≤ x ≤ 1, 0 ≤ y ≤ 2} = [−1, 1]× [0, 2]

We need to compute the double integral2

Vtot =

∫ 2

0

∫ 1

−1

(2x + 3)eydxdy

Plan of attack: work from the inside-out. So, we start solving the inner integral:∫ 1

−1
(2x + 3)eydx . Important: this is an integral in the “x-world”, because of the

dx . It means that x changes, whereas we can treat y as a constant when
computing the integral. So:∫ 1

−1

(2x + 3)eydx = ey
∫ 1

−1

(2x + 3)dx = ey
[
x2 + 3x

]1
−1

= 6ey

2The reverse order would also work: Vtot =
∫ 1

−1

∫ 2

0
(2x + 3)eydydx
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Computing normal double integrals (2/2)

Question: calculate the volume of the 3D body between
z = f (x , y) = (2x + 3)ey and the xy -plane, when the bounds of x
and y are the rectangle −1 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

Vtot =

∫ 2

0

∫ 1

−1
(2x + 3)eydxdy

We found: ∫ 1

−1
(2x + 3)eydx = 6ey

We substitute this into the original double integral:

Vtot =

∫ 2

0
6eydy = 6 [ey ]20 = 6e2 − 6

Conclusion: the volume of the 3D body is Vtot = 6e2 − 6 .
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Another straightforward double integral

Question: calculate the volume of the 3D body between
z = f (x , y) = x3

y and the xy -plane, when the bounds of x and y are
the rectangle 3 ≤ x ≤ 5 and 2 ≤ y ≤ 4.

We want to solve the integral∫ 4

2

∫ 5

3

x3

y
dxdy

We start with solving the inner integral, where x changes and y is
constant: ∫ 5

3

x3

y
dx =

1

y

∫ 5

3
x3dx =

1

4y

[
x4
]5
3
=

136

y

Now we calculate the full double integral: the volume is∫ 4

2

∫ 5

3

x3

y
dxdy =

∫ 4

2

136

y
dy = 136 [ln y ]42 = 136 ln 2

Aron Hardeman Multivariable Calculus (CS+AI) June 15, 2023 19 / 40



Derivatives and applications Double integrals Triple integrals

General regions: Intuition

Type I

Type II

The bounds of y
depend on x

The bounds of x
depend on y

Rectangles are

easy shapes

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy

∫ b
a

∫ g2(x)
g1(x)

f (x , y)dydx

∫ d
c

∫ h2(y)
h1(y)

f (x , y)dxdy

x

y
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General regions: more intuition
Double integrals are like a for-loop. Suppose we have this question: calculate the volume
of the 3D body between the function z = f (x , y) and the xy -plane, above the region D
enclosed by the parabola y = 3x2 and the line y = x + 2. Given that the intersection
points are (− 2

3
, 4
3
) and (1, 3), what would you do?

−2 −1 1 2

5

10

D x

y
3x2

x + 2
Our intuition would be to say:

Volume = 0; ∆x = 0.001; ∆y = 0.001;

for(x = −2/3; x < 1; x += ∆x)

for(y = 3x2; y < x + 2; y += ∆y)

Volume += f (x , y) ∗∆y ∗∆x ;

This program corresponds to V =

∫ 1

−2/3

∫ x+2

3x2
f (x , y)dydx

Thinking this way can help you determine if you need a type I or II integral.
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General regions

Double integrals over general regions

A type I region goes like this:

D = {(x , y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}∫∫
D
f (x , y)dA =

∫ b

a

∫ g2(x)

g1(x)
f (x , y)dydx

A type II region goes like this:

D = {(x , y) | c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y)}∫∫
D
f (x , y)dA =

∫ d

c

∫ h2(y)

h1(y)
f (x , y)dxdy
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Double integrals over general regions (1/2)

Question: calculate the volume of the 3D body between the paraboloid
z = x2 + y2 and the xy -plane, above the region D enclosed by the
parabola y = 3x2 and the line y = x + 2.

−2 −1 1 2

5

10

D x

y
3x2

x + 2

Solving the equation 3x2 = x + 2
gives the endpoints x = −2

3 and
x = 1, so we get a type Ia

V =

∫∫
D
(x2 + y2)dA

V =

∫ 1

−2/3

∫ x+2

3x2
(x2 + y2)dydx

To be computed in the next slide.

aThe region of integration D =
{(x , y) | − 2

3
≤ x ≤ 1, 3x2 ≤ y ≤ x + 2}
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Double integrals over general regions (2/2)

We calculate the integral from the previous slide to find the volume:

V =

∫ 1

−2/3

∫ x+2

3x2

(x2 + y2)dydx =

∫ 1

−2/3

[
x2y +

y3

3

]y=x+2

y=3x2

dx

=

∫ 1

−2/3

[
x2(x + 2) +

1

3
(x + 2)3 − x2 · 3x2 − 1

3
(3x2)3

]
dx

=

∫ 1

−2/3

[
x3 + 2x2 +

1

3

(
x3 + 6x2 + 12x + 8

)
− 3x4 − 9x6

]
dx

=

∫ 1

−2/3

(
−9x6 − 3x4 +

4

3
x3 + 4x2 + 4x +

8

3

)
dx

=

[
−9

7
x7 − 3

5
x5 +

1

3
x4 +

4

3
x3 + 2x2 +

8

3
x

]1
−2/3

=
3125

567

So the volume is 3125
567 . Note: in this case, the order of integration matters. We

have to first integrate w.r.t. y and then x . (Try the other way, it’s very hard.)
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Order of integration can matter

Question: evaluate
∫∫

D
ey

2

dA, where the region of integration is
D = {(x , y) | 0 ≤ x ≤ 1, 5x ≤ y ≤ 5}
Step −∞−∞−∞: write a Type I integral:∫∫

D

ey
2

dA =

∫ 1

0

∫ 5

5x

ey
2

dydx

Observe that we have a problem: we can’t find the antiderivative of ey
2

.

Step 1: rewrite the region as3 D =
{
(x , y) | 0 ≤ y ≤ 5, 0 ≤ x ≤ y

5

}
Step 2: write a Type II integral and solve it:∫∫

D

ey
2

dA =

∫ 5

0

∫ y/5

0

ey
2

dxdy =

∫ 5

0

[
xey

2
]x=y/5

x=0
dy =

1

5

∫ 5

0

yey
2

dy

=
1

5

[
1

2
ey

2

]5
0

=
1

10
(e25 − 1)

3To see this, draw out the (triangular) region on paper
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Polar coordinates (1/2)

Sometimes we need to do integrals using polar coordinates. The polar
coordinate system uses r for radial distance and θ is the angular
coordinate. The polar system looks like this:

x

y

θ

r

(r , θ)

We see the important
equations for polar coordi-
nates, which we use a lot:

x2 + y2 = r2

x = r cos θ

y = r sin θ
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Polar coordinates (2/2)

Back in normal coordinates, we could just say dA = dx dy (or
dA = dy dx). For example:

D = {(x , y) | y ≤ x ≤ y + 2 ∧ 1 ≤ y ≤ 3}∫∫
D
f (x , y)dA =

∫ 3

1

∫ y+2

y
f (x , y)dx dy

For polar regions, we replace dA with r · dr dθ (or r · dθ dr). For example:

D = {(r , θ) | 1 ≤ r ≤ 2 ∧ 0 ≤ θ ≤ 2π}∫∫
D
f (r , θ)dA =

∫ 2π

0

∫ 2

1
f (r , θ)r dr dθ

IMPORTANT: it is dA = r · dr dθ, NOT dA = dr dθ. (This factor r is
the “Jacobian”, do not forget to write it when doing polar coordinates!)
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A “polar” integral

Question: calculate the volume of the solid body bounded by the function
z = f (x , y) = x4 + 2x2y 2 + y 4 and the xy -plane above the circular region in the
xy -plane given in the plot:

1 2

−2

−1

1

2

D x

y Step 1: we can write the region of the plot as

D = {(r , θ) | 1 ≤ r ≤ 2 ∧ − π/2 ≤ θ ≤ π/2}

Step 2: we have

f (x , y) = x4 + 2x2y 2 + y 4 = (x2 + y 2)2

Using the identity x2 + y 2 = r 2, we see that this is
equal to (r 2)2 = r 4.

Step 3: set up the integral and solve it (don’t forget the extra factor r due to
polar coordinates):

V =

∫ π/2

−π/2

∫ 2

1

r 4r dr dθ =

∫ π/2

−π/2

dθ

∫ 2

1

r 5dr = π

[
1

6
r 6
]2
1

=
21

2
π

So the volume is 21
2
π.
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A harder polar integral (1/4)

Question: calculate the volume of the solid body bounded by the function
z = f (x , y) = y

√
x2 + y 2 and the xy -plane above the shaded region in the

xy -plane given in the plot (note: only consider y ≥ 0):

−2 2 4 6

−2

2

4

D

x

y √
x2 + y 2 = 3 + 2x√

x2+y2

x2 + y 2 = 4

x2 + y 2 = 1

Solution: next slide
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A harder polar integral (2/4)

Let’s first rewrite the equation of the red boundary into polar
coordinates (use x2 + y2 = r2 and x = r cos θ):√

x2 + y2 = 3 +
2x√

x2 + y2
⇝ r = 3 + 2 cos θr = 3 + 2 cos θr = 3 + 2 cos θ

The other boundaries are just half-circles with radii r = 1 and r = 2r = 2r = 2.

−2 2 4 6

−2

2

4

D1

D2 θ x

y

We need to split the region; see
the picture.a The angle θ as in the
picture occurs when rblue = rred

2 = 3 + 2 cos θ2 = 3 + 2 cos θ2 = 3 + 2 cos θ ⇒ cos θ = −1

2

So we split the integral at θ = 2
3π.

aThere are also other ways to split
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A harder polar integral (3/4)

In the previous slide, we calculated that the “split angle” is θ = 2π
3
.

We can write the region of integration as D = D1 ∪ D2 (with D1,2 as in the picture on
previous slide, note that these regions do not overlap except at the boundary):

D = {(r , θ) | 0 ≤ θ ≤ 2π

3
∧ 1 ≤ r ≤ 3 + 2 cos θ}

∪ {(r , θ) | 2π
3

≤ θ ≤ π ∧ 1 ≤ r ≤ 2}

We obtain (since z = f (x , y) = y
√

x2 + y 2 = (r sin θ)r = r 2 sin θ)

V =

∫∫
D

f (x , y)dA =

∫∫
D1

f (x , y)dA+

∫∫
D2

f (x , y)dA

=

∫ 2π/3

0

∫ 3+2 cos θ

1

(r 2 sin θ)r dr dθ +

∫ π

2π/3

∫ 2

1

(r 2 sin θ)r dr dθ

To be computed in the next slide.
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A harder polar integral (4/4)

V =

∫ 2π/3

0

∫ 3+2 cos θ

1

(r 2 sin θ)r dr dθ +

∫ π

2π/3

∫ 2

1

(r 2 sin θ)r dr dθ

(∗ Rewrite integral, see next slide for detailed explanation ∗)

=

∫ 2π/3

0

sin θ

∫ 3+2 cos θ

1

r 3dr dθ +

∫ π

2π/3

sin θdθ

∫ 2

1

r 3dr

=

∫ 2π/3

0

sin θ

[
r 4

4

]3+2 cos θ

1

dθ +

(
[− cos θ]π2π/3

[
r 4

4

]2
1

)

=
1

4

∫ 2π/3

0

sin θ
(
(3 + 2 cos θ)4 − 1

)
dθ +

(
[− cos θ]π2π/3

[
r 4

4

]2
1

)
(∗ Antiderivative of (sin θ)(3 + 2 cos θ)4 can be found by subbing u = 3 + 2 cos θ ∗)

=
1

4

[
− 1

10
(3 + 2 cos θ)5 + cos θ

]2π/3

0

+
15

8
=

1

4

(
−37

10
+

3115

10

)
+

15

8
=

3153

40

So the volume is 3153
40

.
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“Factoring” integrals

In the last slide, we got the integral∫ π

2π/3

∫ 2

1
(r2 sin θ)rdrdθ

This looks like a hard integral, but in fact it is easy when realized that it
can be split into a separate r -integral and θ-integral.
This is because we can take constant factors out of an integral. The nice
thing is that e.g. sin θ is also a constant factor when integrating over r .

Similarly,
∫ 2
1 r3dr itself is a perfectly valid constant factor. We then see:

∫ π

2π/3

∫ 2

1

(r 2
const︷︸︸︷
sin θ)rdrdθ ===

∫ π

2π/3

sin θ

const︷ ︸︸ ︷∫ 2

1

r 3dr dθ ===

(∫ π

2π/3

sin θdθ

)(∫ 2

1

r 3dr

)
Which is the product of two straightforward integrals.
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1 Derivatives and applications
Partial derivatives
The gradient & directional derivative
Tangent planes
Critical points

2 Double integrals
In Cartesian coordinates (x , y)
In polar coordinates (r , θ)

3 Triple integrals
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Triple integrals

Observation:
Triple integrals have appeared in the homework, but not in past exams (at
least not in the ones found on Cover).
The coming slides discuss triple integrals.

(I’m not saying you won’t get a triple integral on your exam...)
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Triple integrals

One can also have a triple integral:
∫∫∫

E f (x , y , z)dV
When the region of integration is a box E = [a, b]× [c , d ]× [r , s], then:∫∫∫

E
f (x , y , z)dV =

∫ b

a

∫ d

c

∫ s

r
f (x , y , z)dzdydx

(all 6 orders of integration are possible, in case of a box, since the bounds of the

variables do not depend on each other)

This is an integral that can be solved with methods similar to the ones
from double integrals.
We can also take triple integrals over general regions. For example:

E = {(x , y , z) | 0 ≤ y ≤ 3, 0 ≤ x ≤ y2, 0 ≤ z ≤ xy + 1}

=⇒
∫∫∫

E
f (x , y , z)dV =

∫ 3

0

∫ y2

0

∫ xy+1

0
f (x , y , z)dzdxdy
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Example triple integral

Question: evaluate
∫ 3

0

∫ z2

0

∫ y−z

0
(3x − 2y) dx dy dz .

Solution:∫ 3

0

∫ z2

0

∫ y−z

0

(3x − 2y) dx dy dz =

∫ 3

0

∫ z2

0

[
3

2
x2 − 2xy

]x=y−z

x=0

dy dz

=

∫ 3

0

∫ z2

0

(
3

2
(y − z)2 − 2(y − z)y

)
dy dz

=

∫ 3

0

∫ z2

0

(
−1

2
y 2 − zy +

3

2
z2
)

dy dz

=

∫ 3

0

[
−1

6
y 3 − 1

2
zy 2 +

3

2
z2y

]y=z2

y=0

dz

=

∫ 3

0

(
−1

6
z6 − 1

2
z5 +

3

2
z4
)
dz

=

[
− 1

42
z7 − 1

12
z6 +

3

10
z5
]3
0

= −5589

140
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Spherical coordinates

In the 2D world, we have polar coordinates.In 3D, we have spherical
coordinates (ρ, θ, ϕ). They look like this:

ρ (rho) is the radial distance, θ (theta) is the azimuthal angle, and ϕ (phi)
is the polar angle.
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Integration in spherical coordinates

In the 2D world, we have polar coordinates, where dA = r · dr dθ.

In 3D’s spherical coordinates, we have dV = ρ2 sinϕ · dρ dθ dϕ .

(The blue factors are Jacobians, if you want to know more about them)

For spherical coordinates, we have:

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ

x2 + y2 + z2 = ρ2

Note: the slides use the convention of the book, where ρ is the radial
distance, θ is the azimuthal angle and ϕ is the polar angle. However, some
sources swap the meanings of θ and ϕ and/or write r instead of ρ, so be
aware of that.
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Example integral in spherical coordinates (1/2)

Question: evaluate
∫∫∫

E
xex

2+y2+z2 dV , where E is the region with x2 + y 2 + z2 ≤ 4
and 0 ≤ y ≤ x .
Step 1: do geometry; write E in spherical coordinates:

E =
{
(ρ, θ, ϕ) | 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ π

4
, 0 ≤ ϕ ≤ π

}
Step 2: since x = ρ sinϕ cos θ and x2 + y 2 + z2 = ρ2 in spherical coordinates, we can

rewrite the integrand as ρ sinϕ cos θ eρ
2

.
Step 3: set up the integral. Do not forget the Jacobian ρ2 sinϕ for spherical coordinates!∫∫∫

E

xex
2+y2+z2 dV =

∫ π

0

∫ π/4

0

∫ 2

0

ρ sinϕ cos θ eρ
2

ρ2 sinϕ dρ dθ dϕ

=

(∫ π

0

sin2 ϕ dϕ

)(∫ π/4

0

cos θ dθ

)(∫ 2

0

ρ3 eρ
2

dρ

)
We were able to write the long integral as a product of three single-variable integrals by
using the idea from slide 33.
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Example integral in spherical coordinates (2/2)

Step 4: solve the integral.∫∫∫
E

xex
2+y2+z2 dV =

(∫ π

0

sin2 ϕ dϕ

)(∫ π/4

0

cos θ dθ

)(∫ 2

0

ρ3 eρ
2

dρ

)
The red one can be solved by subbing u = ρ2 (such that du = 2ρ dρ), followed by
integration by parts:∫ 2

0

ρ3 eρ
2

dρ =
1

2

∫ 22

02
ueu du =

1

2

(
[ueu]40 −

∫ 4

0

eu du

)
=

1

2
(4e4 − (e4 − 1)) =

3e4 + 1

2

The green one can be solved by using sin2 ϕ = 1
2
(1− cos 2ϕ):∫ π

0

sin2 ϕ dϕ =
1

2

∫ π

0

(1− cos 2ϕ) dϕ =
π

2
− 1

2

[
1

2
sin 2ϕ

]π
0

=
π

2

The orange one is relatively straightforward, so the answer is:

∫∫∫
E

xex
2+y2+z2 dV =

(π
2

)(1

2

√
2

)(
3e4 + 1

2

)
=

π
√
2

8
(3e4 + 1)

P.S. The need to use substitution, integration by parts and a trigonometric identity makes this
question harder than exam-level (no warranty).
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