Suppose a function \(f(x,y)\) has a critical point at \((a,b)\).
Then we can calculate \(D=D(a,b)=f_{xx}(a,b)f_{yy}(a,b)-\left[f_{xy}(a,b)\right]^2\)
- If \(D>0\) and \(f_{xx}(a,b)>0\), then \((a,b)\) is a local minimum
- If \(D>0\) and \(f_{xx}(a,b)<0\), then \((a,b)\) is a local maximum
- If \(D<0\), then \((a,b)\) is a saddle point
- If \(D=0\), then the test is inconclusive